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Abstract: In this research, we analyze the effect of lightweight syntactical feature
extraction techniques from the field of information retrieval for log abstraction in
information security. To this end, we evaluate three feature extraction techniques and
three clustering algorithms on four different security datasets for anomaly detection.
Results demonstrate that these techniques have a role to play for log abstraction in the
form of extracting syntactic features which improves the identification of anomalous
minority classes, specifically in homogeneous security datasets.
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1 Introduction

In most operational networks, all messages and alarms
from distributed network/service elements are logged
with timestamps into data logs. The logs from different
systems can then be pooled together in a central databa-
se for subsequent analysis. While log analysis has been
studied in the literature in multiple contexts, we main-
tain that previous approaches have adopted techniques
that fail to address the broad scope of log files and/or
are not specific enough for addressing security issues.

In particular, benchmarking and replication studies per-
formed in the literature demonstrate that their generali-
zability in terms of heuristics, accuracy, scalability and
system/data independece in homogeneous and hetero-
geneous environments face several challenges [1, 2, 3].
Thus, in this research we explore the use of lightweight
syntactical feature extraction techniques as an alterna-
tive approach for log abstraction to detect anomalies in
security log files.

Techniques for syntactical feature extraction (such as ra-
tios of function words etc.) are well known and well stu-
died in terms of scalability and data independence in the
information retrieval field [4]. Thus, our aim is to under-
stand their utility in the security field. The underlying
objective is to identify the form of message tokens for log
data abstraction. To this end, we benchmark three dif-
ferent (unsupervised) clustering algorithms using three
syntactic feature extraction techniques. Our approach is
evaluated over four datasets representing both homoge-
neous and heterogeneous environments.

To achieve this, we expand on Gallagher et. al’s work
[4] to study: (i) Simple character/word counts; (ii) Basic
Term Frequency Inverse Document Frequency (TFIDF);
and (iii) TFIDF + Synthetic Minority Oversampling
Technique (SMOTE) as syntactical feature extracti-
on techniques. Moreover, we evaluate these techniques
using clustering (unsupervised learning) algorithms, na-
mely K-Means, Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN) and Expectation Ma-
ximization (EM), over four datasets – ECML/PKDD
2007, ISOT-CID Day 1 and Day 2, and Web Apache
Access log files. To the best of our knowledge, this is
the first time such a study is undertaken using these
feature extraction techniques as an anomaly detection
(clustering) approach over security datasets.

The rest of the paper is organized as follows. Section 2
summarizes the related works in the literature. Section
3 details the methodology followed, including the fea-
ture extraction techniques, clustering algorithms, and
datasets employed. Evaluation and results are presented
in Section 4. Finally, conclusions are drawn and future
work is discussed in Section 5.

2 Related Works

The collection of log messages to characterize the ope-
ration of deployed services and applications is an inte-
gral component of forensic analysis for the identification
and understanding of security incidents. Many approa-
ches have been proposed in the literature for automatic
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log parsing and abstraction by analyzing different net-
work, system and service related data. To this end, data
sources could be categorized into three types: (i) applica-
tion/service log files [5, 6], (ii) operating system log files
[7, 8], and (iii) network traffic log files [9, 10]. Among
these, operating system log files have received the most
attention for automatic log parsing and abstraction al-
gorithms in order to analyze root causes of incidents,
detect alerts, and monitor system performance.

Recently, Zhu et. al. [1] evaluated 13 algorithms that we-
re introduced between 2003 and 2018. The algorithms
were compared according to the execution time, the
number of required pre-processing steps, online/offline,
scalability to the log size, capability to parse under dif-
ferent conditions, and their open source availability. Al-
so, they were evaluated and ranked based on their per-
formance using a set of annotated datasets, including
application/service and operating system log files. Mo-
reover, Copstein et. al. replicated the analysis of those
algorithms on the same log files and security log files
[3]. The assessment focused on the capacity for parsing
and abstraction of log files from the perspective of in-
formation security and forensic analysis. They confirm
that the replication experiments obtain similar perfor-
mance in most cases as demonstrated by Zhu et. al. [1].
However, some of the obtained results were significantly
different than those in the original paper. This might
be indicative of the lack of robustness in some of these
algorithms [11].

El Masri et. al. [2] followed a similar approach, this time
considering 17 log analysis algorithms. Of those, 12 were
the same as the ones used in Zhu et. al. and Copstein et.
al. works [1, 3]. However, the remaining five algorithms
included techniques from machine learning and natural
language processing. Moreover, El Masri et. al. did not
run the 17 algorithms on datasets to measure their ac-
curacy. Instead, they compared the algorithms using a
set of specific criteria, namely scalability, system inde-
pendence, requirement of data pre-processing, and the
time complexity of the algorithm (computational cost).
Their results indicate that while machine learning and
natural language processing-based techniques employed
have challenges in the scalability criteria, they seem to
demonstrate opportunities in terms of system as well as
delimeter indepedence.

Bhamare et. al. employed supervised learning algo-
rithms to automatically parse and classify network traf-
fic log files [12]. They benchmarked Decision Tree, Sup-
port Vector Machine, and Naive Bayes classifiers on
UNSW and ISOT cloud intrusion detection datasets
using packet based features. Their results show that
while the classification algortihms could reach over 90%
identification of normal and attack packets on UNSW
log files, they can at most reach 54% true positive in
attack detection on ISOT log files.

Andriamanalimanana et. al. also employed ISOT cloud
intrusion detection dataset for evaluating the Kullback-

Leibler divergence (of probability distributions) for de-
signing anomaly scores [13]. However, they only use part
of the ISOT dataset, namely the output of iostat, vm-
stat -d and vmstat -a commands to detect anomalies.
Several anomalies were reported, however, the exact ac-
curacy of the proposed method was not measured. In a
second synthetic dataset they were able to measure the
accuracy in terms of recall of anomalies which reached
up to 90%.

Nguyen et. al. design an adaptive intrusion detection
system with 10% higher accuracy than the best of four
different baseline classifiers, namely Naive Bayes, Bayes
Network, Decision Stump and RBF Network [14]. They
combined the outputs of the classification systems by
using the online learning framework. They evaluated
their approach over benchmarking web application se-
curity using ECML/PKDD HTTP dataset and CSIC
HTTP, a dataset they generated. Their results sho-
wed an accuracy of around 91% and 93% on CSIC
and ECML/PKDD datasets, respectively. However, it
should be noted here that during the ECML/PKDD
2007 HTTP attack detection challenge, the highest per-
formances reported for classification systems were 83%,
78% and 80% for precision, recall and F-Score, respec-
tively [15].

In summary, while log abstraction algorithms seem to
work accurately on operating system and application log
files as shown by Zhu et. al, El Masri et. al. and Cop-
stein et. al., they do not work accurately for information
security log files [3]. On the other hand, the literature
on log abstraction for information security increasingly
employs handcrafted features dependent on delimeters
and log characteristics with supervised classification sy-
stems. These result in research gaps in terms of genera-
lizability and scalability to new systems and behaviours
as the services and networks we use grow. Thus, in this
work, we aim to explore lightweight syntactic features
using an anomaly detection based approach in order to
study these gaps.

3 Methodology

Log Abstraction algorithms will often be observed to
be sensitive to the number of tokens (words) present in
log lines. In other words, most of these algorithms will
group lines of different sizes into different sets, despi-
te any other perceived similarity. This demonstrates a
core idea behind log abstraction algorithms: the value
of form over function. In other words, it seems that for
the majority of log abstraction algorithms the syntax is
more important than the semantics.

For log files that are composed of syntactically different
strings – different wording, order of tokens – syntactic
analysis is, arguably, the most efficient form for summa-
rizing the logs by similarity. With this in mind, we explo-
re the efficacy of attributes specifically related to syntax,
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and how they perform from a clustering standpoint. As
the next step, we experiment with these features using
techniques from information retrieval such as vector re-
presentation and lightweight natural language proces-
sing. We maintain that combining lightweight informa-
tion retrieval techniques with clustering has the poten-
tial to enable a more scalable and system/delimeter-
independent approach to anomaly detection on infor-
mation security log files. This also allows us to perform
experiments over a controlled set of features, as opposed
to making the decision of feature selection solely based
on the output of the log abstraction algorithm.

In [4], Gallagher et. al. studied the use of a vector space
model, a commonly assumed approach for information
retrieval, on HTTP attack classification. Their results
showed that it was possible to achieve a high perfor-
mance in the classification of information security rela-
ted data, namely the ECML/PKDD 2007 dataset [16].
To this end, they used syntactic feature extraction tech-
niques such as TFIDF [17]. However, they achieved this
by using the labels of the dataset to create a priori do-
cument models for each label (category) present in the
dataset, i.e. each attack category as well as the normal
category of data represented a document model. Their
classification approach, while achieving a high perfor-
mance, also comes with a disadvantage: It could only
define ‘terms’ for a ’category’ present in the training da-
ta, thus, log files with new terms and categories would
not be represented completely.

In this work, we instead adopt feature engineering ap-
proaches to identify a set of syntactical attributes for
anomaly detection. To this end, we employ clustering
techniques as opposed to classification, albeit by compu-
ting a single document model, as opposed to one docu-
ment model per class (label). We aim to explore whether
similar performance could be achieved under these more
relaxed conditions. This is relevant given that by sepa-
rating document models per class, one is introducing a
form of a priori class segmentation, which reduces the
requirement of any trained model to discover this step
on its own. Given that we employ an anomaly detection
approach via clustering, we do not use labels for feature
selection or training purposes. Thus, we experiment with
several syntactical attribute extraction techniques, such
as TFIDF, and measure their performance properties
under a clustering approach over three security related
datasets:

• The ECML/PKDD 2007 Discovery Challenge
Dataset [16] was created and published to be used
as training/testing data for classifiers for web attack
detection. This publicly available dataset contains ap-
proximately 50,000 entries that are distributed across
eight classes as shown in Table 1.

• The ISOT-CID Dataset [18] was created and pu-
blished to be used as training/testing data for clas-
sifiers on cloud environments for intrusion detection
purposes. This dataset contains 10 days of labelled

network traffic at VM and hypervisor levels, system
logs, performance data (e.g. CPU utilization), and sy-
stem calls. The first and second days of the first col-
lection period were selected for our evaluations. Both
were randomly sampled to represent a balanced dis-
tribution of malicious to benign records: 3,170 entries
for day 1, and 6,293,326 entries for day 2, distributed
across two classes as shown in Table 2.

• The Web Apache Access Logs [19] was created
and published to provide training/testing data for
web attack detection. This set is an annotated Apache
access log file with 37,693 entries, distributed across
three – originally named in Indonesian – classes: Safe
(Aman), Danger (Bahaya), and Suspected (Dicurigai)
as shown in Table 3.

In this context, both the ECML/PKDD 2007 and the
Web Apache Access Logs datasets are homogeneous,
that is, they contain entries (log lines) from a single
deployed application, in this case, Apache web servers.
The ISOT-CID dataset, on the other hand, is hetero-
geneous, meaning that it contains entries from multiple
applications deployed in a common environment, in this
case, a cloud infrastructure.

Table 1: Summary for the ECML/PKDD 2007 dataset

Class # %

C1 - Normal 35,006 69.84%
C2 - Cross-Site Scripting 1,825 3.64%
C3 - SQL Injection 2,274 4.53%
C4 - LDAP Injection 2,279 4.54%
C5 - XPATH Injection 2,279 4.54%
C6 - Path Traversal 2,295 4.57%
C7 - Command Execution 2,302 4.59%
C8 - SSI Attacks 1,856 3.70%

Total: 50,116 100%

Table 2: Summary for the ISOT-CID dataset

Day 1 Day 2

Class # % # %

Benign 1,585 50% 3,112,457 49%
Malicious 1,585 50% 3,180,869 51%
Total: 3,170 100% 6,293,326 100%

Table 3: Summary for the Web Apache Access Logs dataset

Class # %

AMA - Safe 29,778 79%
BAH - Danger 4,965 13.17%
DIC - Suspected 2,950 7.83%

Total: 37,693 100%
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3.1 Syntactical Feature Extraction Techniques
Employed

As discussed earlier, in this work we evaluate three syn-
tactical feature extraction techniques with minimum a
priori information on our datasets. These are summari-
zed as the following:

3.1.1 Syntactical Feature Extraction Technique 1:
Baseline

In order to establish a baseline performance for clu-
stering using syntactic features, we design the first ap-
proach with four syntactic features from each entry (log
line) in the datasets. These features are chosen to be
the baseline due to their independence of any external
model or pre-processing in order to be calculated:

• Alphanumeric Ratio: The ratio of alphanumeric
characters over the total number of characters in the
log line;

• Average Character: The average of the numeric
value of all characters in the log line;

• Character Count: The number of characters in the
log line;

• Word Count: The number of words in the log line
(as separated by a whitespace);

It should be noted here that these techniques are the
most basic forms of extracting syntactic features. While
they may not be optimal in some scenarios – URL de-
composition, for example, due to the lack of whitespaces
and the presence of character separators – they should
be able to produce meaningful values in most of them.

3.1.2 Syntactical Feature Extraction Technique 2:
TFIDF

Term Frequency Inverse Document Frequency (TFIDF)
[17] is a technique used in the field of natural langua-
ge processing to generate representations of text in the
form of vectors of values. The technique is based on the
existence of a document model which contains one or
more reference documents.

Given a document, d, and a document model, D, com-
posed of N documents; a TFIDF vector is calculated by
calculating tfidf(t, d,D) for every term, t, as follows:

tfidf(t, d,D) = tf(t, d)× idf(t,D)

tf(t, d) = log(1 + freq(t, d))

idf(t,D) = log(
N

count(d ∈ D : t ∈ d)
)

In other words, tfidf(t, d,D) increases as the number of
times that t appears in either the given document or in
the document model decreases – and vice-versa. That
is to say that a term with a high TFIDF value is an
infrequent term.

Given the satisfactory results reported in [4], we chose
to use TFIDF as part of the second approach to feature
extraction. To this end, we start by building a docu-
ment model composed of all the entries in the dataset –
where one entry is seen as one document. Next, for each
entry in the dataset, we calculate the TFIDF values for
its terms and extract the minimum value, the maxi-
mum value, and the average value. Unlike [4], we do
not have a separate document model for each class in the
dataset. This not only enables us to minimize the requi-
rement for a priori information such as labels – which
are rarely available in practice for information security –
but also enables our approach to be used for any log da-
ta since no handcrafted features are necessary. Thus, we
believe that by doing so we are more accurately measu-
ring the model’s capacity to find discrepancies between
the existing entries and their behaviours as they were
encountered in the real world.

3.1.3 Syntactical Feature Extraction Technique 3:
TFIDF + SMOTE

It is apparent that class imbalance in datasets can intro-
duce bias towards the majority class [20]. To address this
challenge, for the third feature extraction approach, we
employed the Synthetic Minority Oversampling Techni-
que (SMOTE) together with TFIDF. SMOTE [21], is
a technique that uses known samples of minority clas-
ses to synthetically produce new exemplars for that gi-
ven class. The production of such instances of the class
maintains its overall characteristics, which reduces the
probability of introducing outliers. Employing this ap-
proach means that we ‘flex’ our self imposed minimum
a priori information constraint for preprocessing pur-
poses.

By making use of SMOTE, we rebalance a given dataset
by producing new samples for the non-majority classes.
For example, in the case of ECML/PKDD 2007 dataset,
minority classes C2 to C8 were balanced by oversamp-
ling such that they end up with 10,000 instances each.
Additionally, for the majority class, C1, we randomly
resampled the available instances to select 10,000 exem-
plars as well. As for the Web Apache Access dataset,
we introduce new samples for the non-majority classes
– BAH (danger) and DIC (suspicious) – such that they
ended up with 11,000 instances each. The majority class
– AMA (safe) – was randomly resampled to select 11,000
exemplars as well.

3.2 Clustering Algorithms Employed

In this research, we evaluate three clustering – unsuper-
vised learning – algorithms for anomaly detection:

• Simple K-Means is computationally efficient and
easy to implement. As such, it is one of the most po-
pular iterative clustering algorithms [22]. The algo-
rithm begins by randomly initializing k cluster cen-
troids. Data points are then assigned to the cluster
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with the smallest Euclidian distance between the data
point and the cluster centroid. Centroids are then re-
computed according to the mean position of all points
in a given cluster. The algorithm converges when the
centroids stabilizes or the movement is less than the
given movement threshold. In this context, the most
important parameter to choose is the number of clu-
sters, k. The other parameters to be chosen are the
number of iterations and the maximum iterations,
which affect the stopping criteria of the algorithm.

• DBSCAN is a clustering algorithm that operates on
the premise that clusters are groups of densely packed
data points separated by less dense space [23]. It con-
siders a specified number of nearby points (MinPts or
min samples) as a cluster core if they fall within a
specified distance (ε, or eps). Clusters are expanded
to border points accessible from at least one of the co-
re points. Points that are at least ε away from a core
point are not added to the cluster, and instead mar-
ked as noise. These values must be carefully chosen so
as not to create one large cluster, few, or no clusters.
One issue in applying DBSCAN to data is that the
density of data points is not necessarily consistent
across a dataset, and the choice of ε can prioritize
more dense groupings over less dense, and vice-versa.

• EM is an approach by which one can iteratively find
the parameters of statistical models that approxima-
te the data to be clustered [24]. The data is assu-
med to be modelled by Gaussian distributions, whe-
re the number of distributions is equal to the num-
ber of clusters. Starting from initial models, the al-
gorithm alternates between expectation and maximi-
zation steps. In the expectation step, data points are
assigned to a model based on a probabilistic calcu-
lation. Then, the maximization step computes para-
meters for the models to maximize the log-likelihood
of the data based on the assignments of the previous
step. Thus, the iterative model is used to find (local)
maximum likelihood or maximum a posteriori (MAP)
estimates of parameters. The algorithm is considered
to have converged when the updated models do not
substantially change between iterations.

These were chosen due to the different techniques they
employ for clustering, that is the smallest Euclidean di-
stance on K-Means, point density on DBSCAN, and
MAP estimates for EM.

4 Evaluations and Results

In order to evaluate each one of the syntactical feature
extraction techniques, we trained a model using the afo-
rementioned algorithms to cluster the data on each da-
taset. Our goal is to understand how well clusters match
the accompanying labels (groundtruth) post training. In
order to achieve this, we make use of Waikato Environ-
ment for Knowledge Analysis (WEKA) [25] – a tool for

the execution of knowledge analysis algorithms develo-
ped by the University of Waikato – to run three dif-
ferent clustering (unsupervised learning) algorithms to
analyze the datasets. It should be noted here that, for
all clustering algorithms, we used the default set of pa-
rameters recommended by WEKA. The only exception
being the value of K for the K-Means algorithm, set to
N , to match the number of classes in the dataset being
evaluated (if known). We further increase the value of K
to see the effects of increasing the number of clusters. In
scenarios where the number of classes is unknown, this
value could be determined empirically.

Post training, to measure the performance, each of the
clusters is associated with one of the original dataset
labels such that a cluster corresponds to the label with
highest cluster association. In other words, for each clu-
ster, we count the number of its members (log lines)
that are associated with each possible label in the da-
taset (e.g. how many members belong to label C1), and
associate the overall cluster with the label whose number
of members is the highest. This allows one to gather, for
each cluster: (i) the number of instances (i.e. log lines)
where the instance label matches the associated cluster’s
label (true positives – TP); (ii) the number of instances
where the instance label does not match the associated
cluster’s label (false positives – FP); (iii) the number of
instances where the instance label matches the current
cluster’s label, but were not included in it (false negati-
ves – FN); and (iv) the number of instances where the
instance label does not match the current cluster’s label,
and were not included in it (true negatives – TN). After
training, this enables us to calculate the performance of
each clustering algorithm with each feature extraction
technique in the form of precision (P), recall (R), and
F1-score (F) for all of the available labels (categories).

P =
TP

TP + FP
R =

TP

TP + FN

F =
2× P ×R

P +R

Note that the process of associating a cluster with a label
is only performed for the sake of performance evaluation.
In a production scenario, the dataset labels would not be
used during training, as previously mentioned, because
most of the time they are not known.

4.1 Experiment 1

The resulting F-Score for the experiments using the ba-
seline syntactical feature extraction technique 1 can be
seen for each dataset in Figure 1.

For the ECML/PKDD 2007 dataset and the Apache Ac-
cess dataset – given that anomalous entries contain more
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Figure 1: F-Score values for experiment 1 using the baseline
technique for each dataset

(a) ECML/PKDD’07 Dataset

(b) ISOT-CID Day 1 Dataset

(c) ISOT-CID Day 2 Dataset

(d) Apache Access Dataset

than one class – we also report the results where all at-
tacks are in a single group, i.e. anomolous, as seen in
Figures 2 and 3.

In this first set of experiments, we note that, for the
K-Means algorithm, the performance showed a tenden-
cy towards improvement with increasing values of k.
The EM algorithm, in the case of the ISOT-CID Day
2 and the Web Apache Access Logs datasets, perfor-
med similarly to K-Means, whereas for ISOT-CID Day
1 it showed a less balanced class distribution. For the
ECML/PKDD 2007 dataset, EM returned clusters re-
presentative of only 1 class. DBSCAN also returned this
result under all datasets.

When looking at the results as only normal and an-
omalous classes, we can more clearly see the impro-
vement with increases in the value of k for the the
ECML/PKDD 2007 dataset. Given that both DBSCAN
and EM could only differentiate one class in this expe-
riment, they were not analyzed from this perspective.

The Apache Access dataset, in turn, did not benefit as
much from the increase in the value of k for the K-
means algorithm. The results with the most balanced
class distribution comes from the EM algorithm, despi-
te not being able to discern the third class – Suspicious
(Dicurigai). Once again, DBSCAN was not analyzed fur-
ther because of the poor performance on this dataset.

4.2 Experiment 2

A second set of experiments is performed using the se-
cond syntactical feature extraction technique, i.e. inclu-
ding the TFIDF features. The resulting F-Score for the-
se experiments can be seen for each dataset in Figure
4. The results for the ECML/PKDD 2007 dataset and
the Apache Access dataset considering only normal and
anomalous classes can be seen in Figures 5 and 6.

Under this second set of experiments, we can see the be-
nefit of the TFIDF features in achieving a better class
distribution. Both K-Means and EM showed improve-
ments in this respect while maintaining similar perfor-
mances when compared to the previous set of experi-
ments. DBSCAN, however, maintained its previous class
distribution and performance.

A noteworthy result here is the significant improvement
seen in the results for the ISOT-CID Day 1 dataset.
With the exception of DBSCAN, all algorithms had si-
milar or improved performance when compared to the
previous set of experiments. Moreover, looking at the
results as normal versus anomalous classes, we see that
they are comparable to the previous set of experiments.
This is because any improvement in the balance of class
distribution gets abstracted by the more general anoma-
lous class.
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Figure 2: F-Score values for experiment 1 using the baseline technique over ECML/PKDD dataset considering only normal and
anomalous classes

(a) KMeans 8 (b) Kmeans 16 (c) Kmeans 24

Figure 3: F-Score values for experiment 1 using the baseline technique over Apache Access dataset considering only normal and
anomalous classes

(a) KMeans 3 (b) Kmeans 6 (c) Kmeans 9 (d) EM

4.3 Experiment 3

The final set of evaluations used syntactical feature ex-
traction technique 3 (SMOTE over sampling) on two
of the four datasets. That is to say, since both days of
the ISOT-CID dataset are balanced, there is no need
for oversampling. These results can be seen in Figure 7.
The results for normal versus anomalous classes can be
seen in Figures 8 and 9.

Here, we see a major improvement for the K-Means al-
gorithm. It was able to reach similar class distribution
and performance as the previous experiment, albeit with
a smaller number of clusters necessary (smaller value of
k). EM showed improvement in class distribution for
the ECML/PKDD 2007 dataset and similar performan-
ce for the Web Apache Access Logs dataset. DBSCAN
yielded similar performance as the previous two sets of
experiments.

4.4 Analysis

In the evaluations above, we can see that the K-Means
algorithm tends to perform better as the value of k in-
creases. This results in performance increases especially
in the minority classes, which enables the algorithm to
more affectively recognize anomalous classes.

In the case of the ECML/PKDD 2007 dataset, the pre-
sence of the TFIDF features was crucial in the process
of forming clusters that better represent the minority
classes, whereas the use of SMOTE helped further in
the representation of class distributions. For the Web
Apache Access Logs dataset, use of TFIDF+SMOTE
demonstrates a turning point where the algorithm was
able to find clusters for all three classes for the first ti-
me. The ISOT-CID Day 1 dataset showed significant

improvement with the addition of the TFIDF features,
whereas Day 2, despite showing some improvement, did
not benefit much from it.

The DBSCAN algorithm, throughout the experiments,
was not able to produce clusters representative of more
than one class at a time. Being it a density-based cluste-
ring algorithm, we observe that most instances did not
seem to be placed in dense clusters in the N-dimensional
space created by the extracted syntactic features.

Lastly, the EM algorithm showed a similar trend as the
K-Means algorithm in the baseline technique for the ma-
jority class. However, it was not able to identify minority
classes in the ECML/PKDD 2007 dataset and the Web
Apache Access Logs dataset. For the ISOT-CID Day 1
dataset, there was a decrease in performance when iden-
tifying the malicious class, whereas in the ISOT-CID
Day 2 this issue was not evident and the performance
was similar to that of the K-Means algorithm. The pre-
sence of the TFIDF features provided improvements to
the results of the EM algorithm in terms of identify-
ing the minority classes both for the ECML/PKDD and
Web Apache Access Logs datasets, as well as significant
improvements in identifying both classes in the ISOT-
CID Day 1 dataset.

Among the feature extraction techniques employed, it is
observed that TFIDF+SMOTE provides the best eva-
luations on homogeneous datasets while basic TFIDF
enables the best detection of minority classes on all da-
tasets. Meanwhile, the K-Means algorithm consistently
achieved better performance with higher K values. Itvis
unclear whether the performance would continue impro-
ving if we kept on increasing the value of K. Moreover,
we believe that there is a balance between the number of
features available and the number of clusters requested,
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Figure 4: F-Score values for experiment 2 using the TFIDF
technique over datasets

(a) ECML/PKDD 2007 Dataset

(b) ISOT-CID Day 1 Dataset

(c) ISOT-CID Day 2 Dataset

(d) Apache Access Dataset

i.e. post training response time will be a function of the
number of features and clusters employed.

When compared to related works in the literature, we
can observe that the baseline approach showed similar
performance to [12] by reaching around 54% F-score in
attack detection on the ISOT-CID dataset (both days)
using the K-means algorithm. Conversely, in experiment
2, the F-score gets as high as 80% for attack detection
on the ISOT-CID Day 1. As for the ECML/PKDD 2007
dataset, while the highest F-score reported in [15] was
80%, our method was able to reach 85% F-score for de-
tection of normal entries, and 66% F-score for detection
of attacks using approach 3 with the K-means algorithm.

5 Conclusion

The efficient analysis of log messages has become incre-
asingly important with the ever-growing scale of cyber
attacks and equally growing collection of tracked infor-
mation for forensic analysis. To this end, techniques ba-
sed on ML have grown in popularity due to their promi-
se of meeting the performance required by such systems.
However, most of these techniques still rely on the se-
lection of suitable features to be extracted from the log
messages in order to reach their full potential.

Given the observed success of syntactic techniques such
as TFIDF in classifying network security data [17], in
this work we explore the impact of using syntactic fea-
tures for anomaly detection and their utility for infor-
mation security. In doing so, our goal is to understand
the effect of the form of message tokens for representing
log events as features. To this end, we evaluated three
feature sets based on lightweight syntactic feature ex-
traction techniques (baseline, basic TFIDF, and TFIDF
with SMOTE) on four security datasets (two homoge-
neous and two heterogeneous) using three clustering al-
gorithms, namely K-Means, DBSCAN and EM.

Our results indicate that the representation of log files
using basic TFIDF enables the detection of anomous
behaviours (minority classes in ECML/PKDD and Web
Apache Access datasets) more than the baseline techni-
que on the homogeneous datasets. Augmenting TFIDF
with SMOTE indicates even better performance on ano-
moulous (minority) classes by balancing the training
data across all clustering techniques. Moreover, the K-
Means algorithm performs better or is competetive to
DBSCAN and EM algorithms, irrespective of the fea-
ture set or dataset used. On the other hand, the effect
of basic TFIDF versus the baseline technique on the he-
terogonous and balanced datasets seems to be less con-
sistent.

In some scenarios, we observe that challenges exist in
differentiating one type of attack from another – such
as attack classes C2 and C8 for the ECML/PKDD 2007
dataset. We believe that these cases represent vulnerabi-
lities that are less reliant on syntax attributes than the
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Figure 5: F-Score values for experiment 2 using the TFIDF technique over ECML/PKDD dataset considering only normal and
anomalous classes

(a) KMeans 8 (b) Kmeans 16 (c) Kmeans 24 (d) EM

Figure 6: F-Score values for experiment 2 using the TFIDF technique over Apache Access dataset considering only normal and
anomalous classes

(a) KMeans 3 (b) Kmeans 6 (c) Kmeans 9 (d) EM

Figure 7: F-Score values for experiment 3 using the
TFIDF+SMOTE technique over datasets

(a) ECML/PKDD 2007 Dataset

(b) Apache Access Dataset

other, more easily identified ones. For example, a path
traversal attack can be perceived as more impactful in
terms of syntax – given the presence of multiple path
separators (/”) and/or relative path indicators (”.”) –

than a command execution attack – where most com-
mands are indistinguishable from regular words. This
could be a limitation of using syntax-related features
with classifiers, where the classification is highly depen-
dent on how much the vulnerabilities being searched for
impact the syntax of the logs. Further analysis is neces-
sary to understand the reasons behind these phenome-
na. When compared to similar work in the literature, we
observe comparable performance yielded by our method
despite only using lightweight syntactical features.

Overall, these results indicate that log abstraction using
lightweight syntactic feature extraction techniques on
balanced training datasets improves the performance of
clustering algorithms, specifically K-Means on homoge-
neous security datasets.

Future research will explore augmenting the syntactical
features with semantic features by incorporating the
security heuristics proposed in [3]. We believe this could
provide benefits in terms of explainability and root-
cause analysis for anomaly detection in information
security. Moreover, we will explore the use of different
syntactical features on heterogeneous datasets to better
understand their effects. Further study into homoge-
neous and heterogeneous environments is desirable. To
this end, future research in heterogeneous cloud envi-
ronments would be necessary given the ever growing
enterprise application deployment on these platforms.
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Figure 8: F-Score values for experiment 3 using the TFIDF+SMOTE technique over ECML/PKDD dataset considering only normal
and anomalous classes

(a) KMeans 8 (b) Kmeans 16 (c) Kmeans 24 (d) EM

Figure 9: F-Score values for experiment 3 using the TFIDF+SMOTE technique over Apache Access dataset considering only normal
and anomalous classes

(a) KMeans 3 (b) Kmeans 6 (c) Kmeans 9 (d) EM

The research is conducted as part of the Dalhousie NIMS
Lab at: https://projects.cs.dal.ca/projectx/.
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