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Abstract—Even though BGP blackholes are used to mitigate
denial of service attacks, they also represent a major cybersecurity
challenge to organizations. These challenges include abuse of route
selection algorithms, lack of host verification, and maliciously
triggering a blackhole, i.e. BGP blackjack. This research presents
a supervised machine learning based approach for blackjack de-
tection. We employ Naive Bayes and Decision Tree classifiers with
three different temporal representations: (i) packets with/without
timestamps; (ii) buffer of packets with/without timestamps; and
(iii) overlapping / non-overlapping buffer of packets with/without
timestamps. Our goal is to understand the effect of temporal data
and context in the detection of blackjack attacks. Furthermore,
we explore the most suitable attributes and solution complexity.
Evaluations show that using overlapping buffer data with times-
tamps achieves the highest accuracy/recall using five of the seven
BGP attributes. We also observe that high performance is not
correlated with complex solutions.

Index Terms—BGP, blackholing, blackjack attacks, security

I. INTRODUCTION

Distributed denial of service (DDoS) is a popular form of
attack with the objective of taking down services on the Inter-
net. One of the techniques that emerged to mitigate this kind
of attack is called BGP Blackholing, i.e. dropping traffic to a
destination (prefix). The Border Gateway Protocol (BGP) [1] is
the Internet’s de facto wide area network (interdomain) routing
protocol. Using BGP update messages, a BGP blackhole can
be requested by an Autonomous System (AS) for a certain
IP prefix by announcing a route to peer ASes using BGP
communities [2]. If the blackhole is established, all traffic
destined to the requested IP prefix is dropped, sparing the host
machine from the attack at the cost of suffering some (but
possibly not complete) unavailability.

As seen in [3], most blackholes last at least as much as
the attacks themselves, which have been observed to have a
duration of 10 minutes or less in almost half the cases. However,
this can be longer given that almost half of the observed cases
took one hour or more to have their blackholes deactivated after
the end of an attack [3]. Being built on top of BGP, blackholing
does not have a host verification mechanism in place apart from
the peer AS’s number. This results in security vulnerabilities
[4], making ASes that support BGP blackholing vulnerable to
maliciously-intended blackhole requests, i.e. blackjack attacks.
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BGP blackjack has been previously explored in [5] as a
variation of the BGP hijacking (or prefix hijacking) attack [6].

A blackjack attack targets a specific prefix and attempts to
trigger a blackhole for it without warning the legitimate owner
of the prefix. This causes legitimate traffic to be dropped,
essentially resulting in a DDoS attack. It can also be used to
abuse route selection algorithms, which usually give preference
to smaller routes [7] or routes tagged with a blackholing
community [8] to re-route traffic. Despite being called an attack,
blackjacks can also happen due to misconfigurations of an AS.
These may not be necessarily malicious, but can still cause
similar undesirable side-effects.

In this research, we aim to explore the importance of tem-
poral representations of data for detecting blackjack attacks in
BGP data. To achieve this, we use a supervised learning based
approach and three techniques: (i) With timestamps (explicit
representation) or without timestamps (implicit representation
via packet sequence); (ii)) A buffer (sliding window) of se-
quential (historical) data with/without timestamps; and (iii) A
buffer of overlapping / non-overlapping data (via tap-delay-
line) with/without timestamps. In order to evaluate the effects
of these temporal representations, we train and test Decision
Tree and Naive Bayes classifiers on a labelled blackhole and
blackjack activity dataset which is generated using publicly
available BGP data. To the best of our knowledge, this is the
first work in the literature exploring the temporal representa-
tions of contextual data in the form of a sliding window, and
the use of tap-delay-lines for detecting BGP blackjack attacks.

The rest of the paper is organized as follows. Section II sum-
marizes the related literature on BGP blackholing and blackjack
attacks. Section III describes the process of generating the
blackhole and blackjack dataset as well as the credence metric
for BGP data. Section IV introduces the propsoed approach
used in this research. Section V presents the experiments and
discusses the results. Finally, conclusions are drawn and future
work is discussed in Section VI.

II. BACKGROUND AND RELATED WORK

BGP data is known to be very rich in terms of routing
and AS related information. The analysis of BGP data could
provide not only the topology and overall behaviour of ASes,



but also possible attempts at attacks. As a result, this could
lead to better management, performance and security for a
given organization. One of the attacks that can be performed
is the BGP prefix hijacking [6]. A prefix gets hijacked when
an AS announces it, even though it does not own it. This
can cause multiple ASes to forward traffic intended for that
prefix to the attacker, causing the packets to be lost and any
service offered by the victim to be denied. BGP blackholing is
a technique used by AS network managers for mitigating these
types of DDoS attacks. It is a strategy of redirecting anomalous
traffic to null interfaces. The most common implementation
involves configuring the next-hop field of the attacked (victim)
network to a private Internet address [9]. This, however, has
the undesirable side-effect of rendering that particular network
inaccessible, effectively contributing to the denial of the service.

Thus, an early improvement to this technique was developed
in 2004 — RFC 3882 [10] — where by using BGP communi-
ties, the traffic would be blackholed (dropped) on individual
border routers, as opposed to the entire AS. This strategy
works by adding a BGP community that identifies each router
on the announcement. If a router receives an announcement
containing its community, it configures the blackhole for the
announced addresses. Other routers would be oblivious to the
blackhole request and would install the route normally (without
a blackhole). In 2009, further improvements to this technique
were proposed by using it in addition to Unicast Reverse
Path Forwarding (uRPF) [11]. uRPF proposes that routers filter
packets based on their source IPs as well as their destinations.
By using uRPF, a router can determine if the route used is
valid (or at least likely) for the provided source IP address.
Packets from invalid (or unlikely) routes are dropped. More
recently, in 2016, RFC 7999 [12] proposed the use of a well-
known blackholing community in an attempt to streamline the
implementation of blackholing-aware ASes and the relationship
between them.

Among related works, Giotsas et al. [13] present the efficacy
of BGP blackholing and discuss that blackholing is very useful
in mitigating DDoS attacks. However, they do not have any
analysis regarding the origin of the blackholing request, hence
leaving open whether requests are legitimate or, possibly,
malicious. Streibelt et al.’s [2] study, where the misuse of BGP
communities is explored, reports that communities are meant to
span only a limited number of peer ASes. But, in their datasets,
communities were observed being forwarded far further than
just a couple of hops. It is also reported that, in scenarios
of misconfigurations, BGP communities can be used as an
attack vector to cause malicious blackholing, route steering and
manipulation (as in BGP blackjacks). Some of these attacks can
be executed even without previously hijacking the target prefix.

The study on BGP blackholing in the wild by Jonker et al. [3]
explores more technical aspects of the use of the blackholing
technique. Their analysis on deployment of blackholes during
DDoS attacks results in very relevant information on reaction
time for deploying/withdrawing blackholes, attack duration,
intensity and total number of packets. Furthermore, Meyer et al.

[14] introduces an Intelligent Threat System for supporting in
attack reconnaissance and mitigation. However, their use case
for BGP blackholing does not account for possible malicious
behaviours. Miller et al. [5] introduce the concept of blackjack
attacks as the combination of a BGP blackhole request and
a prefix hijacking attack [6]. They describe multiple possible
variations of this attack as well as security mechanisms that
could stop them. In this research, we concentrate on these BGP
blackjack attacks.

III. DATASET

Due to the unavailability of a labelled dataset for blackjack
attacks, we compile a BGP traffic dataset based on the publicly
available Route Views Archive Project (RVAP) [15]. The orig-
inal data is around 178 million packets, May 5th 2020. Packets
not identified as blackhole requests are discarded. For every
blackhole request packet, one entry is created for each prefix
announced. Each entry in the dataset is composed of a label
classifying whether the packet is considered a benign blackhole
request or a possible blackjack attack, along with the attributes
shown in Table I. The process of filtering blackhole requests
and labelling are discussed in the following sections. The pre-
processed data used will be made public on Github.

A. Filtering BGP Blackhole requests

A request for a BGP blackhole is made by sending a BGP an-
nouncement with the proper community attached to peer ASes.
This community is established by each AS’s administrator, so
it can vary from AS to AS. However, since the addition of RFC
7999 [12], it has become more common for ASes to use the
community suffix :666. However, it is naive to assume that all
ASes follow this standard; either due to not having adopted it
or due to security concerns [13].

In order to account for ASes that are not following the RFC
7999 standard, we compiled a dictionary, which is based on
[13], of BGP communities that signal blackholing requests. A
manual search on ISP webpages and AS registration documents
is performed in order to augment this dictionary. The aug-
mented dictionary contains 32/ entries for 268 distinct ASes.
This is used to determine whether a packet contains blackholing
requests.

Thus, extracting BGP blackhole requests from the original
data becomes a matter of checking if any of the communities
in a given packet contain the :666 prefix or are contained in the
dictionary. If so, an entry is added to the dataset for each of the
announced prefixes with a label 0 meaning “not an attack”, and
1 meaning “possibly an attack”. The following section presents
the labelling process.

B. Labelling of BGP Data

As seen in [5], there are multiple types of blackjack attacks.
In this research, we focus on type Type-0, where the origin of
the request is spoofed, and Type-N, where one or more peer
connections are spoofed. To automate the process of labelling,
an algorithm is designed to determine whether an entry is,



TABLE I
ATTRIBUTES IN THE BGP BLACKJACK DATA

Time

The timestamp (in seconds) when the packet is received

Origin

The AS that originally created this request (the rightmost in the AS-PATH)

Number of Communities

Number of BGP communities attached to this packet

Size of AS-PATH

Number of hops in the AS-PATH property

Number of Prefixes

Number of prefixes announced by the packet

Number of Addresses

Number of addresses in the prefix range

Credence

Credence metric for the timestamp this packet received

possibly, one of these two attacks. Essentially, for each entry
in the dataset, two conditions are checked as reported in [4],

(51, [7]:

1) Has this prefix been announced before? If so, is it being
announced again by the same AS?

2) Does this blackhole request announce an AS-PATH that
is more likely to be accepted than the existing one?

The first condition is to filter packets that announce prefixes
not owned by the announcer. This is done by comparing their
announcement to the previously seen announcements of those
same prefixes. If more than one AS announces this prefix, there
is a possible hijack attempt and being a blackhole request,
the label is a Type-0 blackjack. The second condition is to
filter packets that try to exploit the route selection algorithm
of the victim AS. It is common for ASes to accept routes that
are shorter (less number of hops) than the ones installed [7].
Therefore, by announcing a prefix with a shorter AS-PATH, the
attacker is more likely to make that route installed, which in
return becomes a malicious blackhole.

As discussed earlier, BGP update messages are used for
changing BGP routes. BGP routing changes could occur for
many reasons, including hardware / software failures, routing
policy changes, or malicious attacks. Determining the cause
directly from the BGP update messages is almost impossible.
Thus, network operators tend to allow route updates (announce-
ments for prefixes) rather than run the risk of misrouting
legitimate traffic. Hence, once a BGP update message with
a previously unseen route is announced, it will likely be
propagated to the AS’s peers resulting in the number of packets
being transmitted to increase. This would reflect as a spike in
the BGP traffic where the packet load will be higher than it had
been. In this work, we define the Credence Metric to measure
the confidence in a given spike in BGP traffic.

Let P be the set of packets received by a host. Let time(p)
where p € P be the timestamp when p is received rounded
to the nearest second. We start by calculating a time-series, 7',
where T is the value of 7' at instant ¢, as follows:

T; = |[z|z € P Atime(z) = i]| (1)

Let W be a number representing a time window under
analysis such that 0 < W < |P|. Next, we calculate a new
time-series, A, where A; is the value of A at instant 7, as
follows:

A, = (Tio1 + W+ Ti—w) @

Time-series A is only defined for i > W.
Let H be a number indexing the historical data such that
W < H < |P|. Let hist(i), for instant 7, be defined as:

hist(i) = [Ti—1,Ti—2, ..., Ti—n] 3)

Time-series hist is only defined for ¢ > H.

Consider max(X) as the maximum value for the set X. We
now calculate a new time-series, [N, where IV; is the value of NV
on instant ¢, with the noise metric at a given instant, as follows:

di = |T; — A4
m; = maz(|lz — A;| for x € hist(i)) 4)
d;
Ny = —"
d; +m;

Here, d; represents the difference between the number of
packets at instant ¢ and the average number of packets in its
immediate window. The value of m; represents the largest
difference between any value in the history and the average
number of packets in the immediate window of <.

With that, the Credence Metric is given relative to how
much bigger the current ’difference’ between the number of
packets and the average number of packets is from the largest
“difference’ seen in the immediate window of historical data.
In summary, there are two parameters that can be customized
in this approach: W and H. In this work, W is initialized as
12 and H as 24, based on the empirical studies performed.

IV. PROPOSED APPROACH

In this research, we explore the use of three different tech-
niques for temporal representation of BGP data and evaluate
how much each of them impacts the overall performance to
detect BGP blackjack attacks. The first technique is the use of
an explicit representation of time. In this context, an explicit
representation of time is given in the form of a timestamp, i.e.
the time attribute in the dataset. An implicit representation of
time does not include that attribute. The second technique uses a
sliding window of sequential (historical) BGP data over a given
period of time. We refer to this as a buffer and use a buffer of
size X. Buffers for sequential BGP packets in time with X > 1
will demonstrate overlapping data, i.e. oldest packet leaves from
the buffer and the new one comes in. Thus, the third technique



TABLE 11
EXPERIMENTS PERFORMED

Experiment Time Buffer Size (X) | Tap-Delay-Line (Y)
1 Explicit - -
2 Implicit - -
3 Explicit 5 -
4 Explicit 5 5
5 Implicit 5 -
6 Implicit 5 5
7 Explicit 7 -
8 Explicit 10 -
9 Explicit 12
10 Explicit 15 -

TABLE III

SIZE OF DATASET PARTITIONS IN EACH EXPERIMENT

Experiment | Training (20%) | Testing (80%)
1 20,792 503,701
2 19,804 463,637
3 41,512 1,056,575
4 8,962 240,332
5 41,404 1,050,858
6 8,944 238,119
7 43,984 1,146,335
8 45,966 1,238,851
9 46,760 1,282,000
10 47,610 1,325,242

introduces a tap-delay-line of size Y. As an example, instead of
feeding each BGP packet sequentially (Y = 1) to an algorithm,
we could feed every fifth (Y = 5) BGP packet. This reduces the
data overlap (1 < Y < X) or completely avoids it (Y = X),
which is analyzed in this work.

Given these techniques, we designed 10 experiments (Table
II) to evaluate and analyze our proposed system. The size of the
buffer is selected based on [16], which used a size of X = 5asa
starting point. We also explored the effect of different values for
X (5,7,10, 12 and 15). In all experiments, a balanced number
of benign blackhole requests and blackjack attacks are used
to train a CART Decision Tree classifier and a Naive Bayes
classifier via the scikit-learn tool set. Naive Bayes and Decision
Tree classifiers are used as the supervised learning algorithms,
since (i) Naive Bayes is a simple probabilistic classifier; (ii)
Decision Tree has the ability to select a subset of attributes
from the set of all given attributes (using Information Gain
metric); and (iii) Decision Tree solutions (trained models) are
in the form of rules, hence making it human readable. These
classifiers allow us to understand whether the data is linearly
separable as well as compare the solutions. As seen in Table III,
the training partition used is equivalent to 20% of the original
dataset whereas the testing partition is equivalent to 80%. In
all experiments, the number of blackjack attacks in the test
partition represents around 0.5% of the total number of packets,
similar to what is seen in real life [5].

V. EXPERIMENTS AND RESULTS

In order to evaluate the performance of each experiment,
we report the metrics of accuracy, Eq. 5 and recall for black-

jack attacks, Eq. 6, as well as the solution complexity. Both
equations are defined in terms of correctly classified entries
as attacks (TP), correctly classified entries as normal (TN),
incorrectly classified entries as attacks (FP), and incorrectly
classified entries as normal (FN). In the following, we present
the performance of the trained classifiers on the testing partition
of the dataset. Further analysis of the attributes and solutions
are done on the trained models.

N B TP+ TN )
Y = TP TN f FP+ FN
TP
Recall = m (6)

As seen in Fig. 1, the highest values for accuracy are reached
in experiments 1, 3, 7 and 8 for the Naive Bayes classifier and
experiments 3, 7, 8, 9 and 10 for the Decision Tree classifier;
all higher than 80%. The common ones are experiments 3, 7
and 8 for both classifiers, where a sliding window of historical
data including the timestamp attribute but no tap-delay-lines
were employed as the temporal representation.

Even though the Naive Bayes classifier seems to be achieving
a higher accuracy than the Decision Tree classifier in these
experiments, a closer look shows that this is not the complete
story. In Fig. 2, we observe that the Naive Bayes classifier
performs very poorly (20% or less) in terms of recall. In other
words, the Naive Bayes classifier is not able to learn to identify
the blackjack attacks, which are only 0.5% of the test dataset.
Thus, labelling the data as benign results in high accuracy but
very low recall. On the other hand, the Decision Tree classifier
reaches up to 85% recall while achieving 84% accuracy. This
not only results in higher performance for the Decision Tree
classifier but also shows that it learns to identify the blackjack
attacks even though they only form the 0.5% of the dataset.

To put this in perspective, for example a dataset containing
one million packets includes around 5,000 (0.5%) attack pack-
ets. Considering accuracy/recall upwards of 80%, the proposed
system detects 4,000 of these packets without false alarms.
Thus, for the remaining evaluations and analysis, we will focus
on the solutions that uses the Decision Tree classifier.
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TABLE IV
TREE DEPTH OF THE DECISION TREE AFTER EACH EXPERIMENT
Experiment | Tree Depth
1 45
2 51
3 45
4 40
5 52
6 38
7 38
8 39
9 44
10 39

Table IV shows the depth of the trained decision tree after
each experiment. The depth of the trained decision tree is used
as a metric to indicate the complexity of the solution. Fig. 3
shows that the highest performance does not seem to require a
complex solution. In fact, the trained solutions of the Decision
Trees in experiments 7, 8 and 10 (which have upwards of 80%
accuracy and recall) have some of the lowest complexities.

Furthermore, as seen in tables V to IX, we report how many
times a specific attribute is used in the trained Decision Tree for
each of the highest performing experiments: 3, 7, 8, 9 and 10.
For experiments that use a buffer, the usage of each attribute is
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Fig. 3. Accuracy / Recall vs. tree depth for each experiment

TABLE V
NUMBER OF CONDITIONS FOR EACH ATTRIBUTE IN EXPERIMENT 3

Attr. \Pkt. 1 2 3 4 5
Origin 694 | 498 | 518 | 504 | 584

Ay 384 | 256 | 190 | 228 | 312
Prefixes
Size
ASPATH | 334 | 306 | 278 | 204 | 336

Time 346 | 346 | 308 | 318 | 288
Credence 466 | 366 | 416 | 356 | 498

Num. 1o | 4 | 10| 12| 18
Communities

TABLE VI
NUMBER OF CONDITIONS FOR EACH ATTRIBUTE IN EXPERIMENT 7

Attr. \Pkt. 1 2 3 4 5 6 7
Origin 596 | 362 | 392 | 346 | 358 | 390 | 466

Al 294 | 186 | 170 | 184 | 170 | 174 | 240
Prefixes
Size 320 | 202 | 224 | 222 | 190 | 226 | 230
AS-PATH

Time 220 | 178 | 178 | 220 | 192 | 176 | 174
Credence 364 | 248 | 212 | 234 | 214 | 266 | 290

I 20| 10|10 16| 2| 12|16
Communities

related to its packet in the buffer. For example, in Table V —
detailing experiment 3 — the row for the Origin attribute and
column 4 show that the Origin attribute relative to the fourth
packet in the buffer is used 504 times in the trained decision
tree. In these tables, cells with ”-” indicate that they are not
used (not applicable) for that experiment.

As stated before, experiments 3, 7, 8, 9 and 10 reached
the highest recall performance for the Decision Tree classifier.
What is interesting to notice here is that they all share the same
set of temporal data representations: explicit representation of
time, the use of a buffer (different sizes), and overlapping data,
i.e. no tap-delay-line. Moreover, the results show that the use
of tap-delay-lines seems to negatively impact the performance.

For the Decision Tree classifier, it is also interesting to notice
that every experiment, with the exception of 4 and 6 (due to
their use of tap-delay-line) performs better (see results above)
than its counterpart. For example, we can see that experiment
1, which uses an explicit representation of time, performs
better than experiment 2, which uses an implicit one. However,
experiment 3, which uses a buffer in addition to an explicit
representation of time, performs even better than experiment
1. We also observe that there is no correlation between the
accuracy and recall vs. the solution complexity of the tree.

As for the attributes selected, the results show that the
attribute number of addresses is not selected in any of the
experiments by the decision tree. This seems to imply that this
BGP attribute is not required for detecting blackjack attacks.
This can be explained by the fact that most BGP blackholing
requests are only accepted when they refer to a single IP (prefix
/32), which would render that parameter to be 1 in the majority
of the cases. Moreover, we also observe that, despite being used
in all experiments, the attribute number of communities is used



TABLE VII
NUMBER OF CONDITIONS FOR EACH ATTRIBUTE IN EXPERIMENT 8

Attr. \Pkt. 1 2 3 4 5 6 7 8 9 10
Origin 510 | 360 | 258 284 258 248 228 272 264 344
L 206 | 140 | 120 | 104 | 118 | 102 | 92 90 106 | 150
Prefixes
Size
AS-PATH 238 | 166 | 156 | 144 | 126 | 164 | 150 | 150 | 146 | 146
Time 128 | 142 | 110 | 112 | 108 90 108 | 138 | 128 96
Credence 216 | 184 | 158 | 136 | 140 | 114 | 180 | 166 | 156 | 214
Num. oy V2 | 6| 6 |12 ] 6 | 16| 16| 10 16
Communities
TABLE VIII
NUMBER OF CONDITIONS FOR EACH ATTRIBUTE IN EXPERIMENT 9
Attr. \Pkt. 1 2 3 4 5 6 7 8 9 10 11 12
Origin 436 | 256 | 318 | 204 | 220 | 248 | 196 | 224 | 206 | 242 | 246 | 290
Num. 260 | 148 | 132 | 78 100 86 66 88 90 84 100 | 112
Prefixes
Size
AS-PATH 212 | 178 | 132 | 132 | 102 94 120 | 104 | 112 | 102 | 108 | 124
Time 68 88 92 96 104 86 82 78 90 78 94 86
Credence 186 | 148 | 150 | 118 | 128 | 114 | 106 94 124 | 116 | 132 | 188
Num.' . 20 14 16 14 6 6 10 14 4 12 12 14
Communities
TABLE IX
NUMBER OF CONDITIONS FOR EACH ATTRIBUTE IN EXPERIMENT 10
Attr. \Pkt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Origin 402 224 | 202 176 160 | 218 136 166 144 148 174 192 188 212 210
T 222 | 108 96 60 82 74 96 64 56 64 62 66 70 74 86
Prefixes
Size
AS-PATH 192 146 126 90 82 72 104 82 72 92 118 88 116 86 98
Time 70 88 72 74 78 46 58 66 72 60 70 68 54 74 66
Credence 132 | 108 | 108 | 112 | 112 | 112 | 72 76 88 90 90 78 108 | 130 | 138
R 12 | 8 8 8 8 4 2 4 2 6 6 4 4 10 | 6
Communities

much less than the other attributes. This makes it a potential
candidate for pruning of the decision tree. Finally, given the
above results, we observe that experiment 8§ — buffer size of
10 with explicit representation of time and overlapping data
— achieves the highest recall (85%) and accuracy (84%) as
well as the lowest solution complexity (depth 39) of the trained
Decision Tree solutions.

VI. CONCLUSIONS AND FUTURE WORK

Despite the benefits as a mitigation technique, BGP black-
holing can also be used as an attack vector to cause service dis-
ruption, i.e. denial of service. This type of malicious behaviours
are called BGP blackjack attacks. By using a BGP blackhole
communities dictionary based on [13], we were able to filter
publicly available BGP data for blackhole requests. Then, using
the definition of the blackjack attacks [S5], we were able to label
possible Type-0 and Type-N attacks using a credence metric.
This allowed us to compile a BGP blackjack attack dataset.
Using this publicly available compiled data, we explore three
different temporal representations of data to detect blackjack
attacks via supervised learning, namely Decision Tree and

Naive Bayes classifiers. To this end, experiments are designed
to evaluate the impact of temporal data representations: (i) With
/ without timestamps; (ii) with a buffer (sliding window) of
sequential data with/without timestamps; and (iii) with a buffer
of overlapping / non-overlapping data with/without timestamps.
Results show that the solutions using a Decision Tree classifier
outperform the ones using a Naive Bayes one. Moreover,
temporal data representation in the form of a buffer of size 10
with time attribute and with overlapping data provides a good
trade-off between accuracy, recall and solution complexity for
the Decision Tree classifier. We also evaluate the relevance of
the attributes chosen and select a subset for BGP Blackjack
attack detection. To this end, 5 of the 7 BGP attributes — Time,
Origin, Size-of-AS-Path, Number of Prefixes, and Credence —
are observed to be the most relevant ones for this problem
on our datasets. These observations and findings seem to be
essential for the development of a high performing solution.

Future work will investigate the use of more datasets, varia-
tions on tap-delay-lines and other machine learning algorithms
to improve the proposed approach. Also, online implementa-
tions of the proposed approach will be studied.
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