Distributed File System for an Edge-Based Environment

Rafael Neujahr Copstein'

Abstract— Recent developments in the industry of personal
computing led to a greater number of the so-called edge
devices. Such devices typically do not collaborate or foresee
the possibility of collaboration to offer aggregated storage and
computing capabilities. The concept of distributed file system
(DFS) is not new to the field of distributed systems, in fact, it is
widely used in dedicated infrastructures, for example, in cloud
computing applications.

In this work, we discuss reasonable assumptions for an envi-
ronment composed of edge devices, the main design issues and
implementation challenges of a DFS in the given environment
and how they would impact this application. Thereafter we
define a system model for an environment composed of edge
devices while taking into consideration their high mobility and
common cases of network partitioning. Next, we describe an
architecture for a DFS that withstands the proposed system
model while offering most capabilities that a DFS at a dedicated
infrastructure would.

We conclude that the development of a distributed file system
is a very complex task and, given the broad assumptions of the
system model, also hard to verify. Some important aspects of
the development lie as future work, but we believe that the
developed DFS can be used not only as a tool on it’s own, but
also as a reference for further development of distributed file
systems and, specially, of systems for infrastructures composed
of edge devices.

I. MOTIVATION

Recent developments in the industry of personal comput-
ing led to a greater number of client devices with computing
capabilities, the so-called edge devices [11]. Because of this,
we can witness users owning an ever growing number of
devices to fulfill different but often overlapping functions,
and households containing an even greater number of them.
These devices are ubiquitously equipped with networking
functions and often with fully fledged operating systems.
But, despite the existing knowledge in aspects such as
networked and distributed systems, cooperation paradigms,
heterogeneous platforms and other related topics, we observe
that these devices typically do not collaborate or foresee the
possibility of collaboration to offer aggregated storage and
computing capabilities, but tend to focus on their specific
functions. Besides that, the specific functions of these devices
are often very limited in spite of the fact that there is usually
a considerable amount of computing power.

Whatever the reasons behind this state of affairs may be:
economic driven (devices are cheaper and cheaper), market
driven (industry wants to stick to closed families of devices),
or even the opinion that collaboration at edge devices is
difficult to handle due to disconnections and more ephemeral
life cycles; it is not difficult to agree that more elaborated

1School of Technology, Potifical Catholic University of Rio Grande do
Sul (PUCRS), Porto Alegre, RS - Brazil.

Fernando Luis Dottil

collaboration models among such devices are lacking and
are needed in order to achieve higher functions, which are
likely impossible to be offered by isolated devices.

The idea of using the combined capabilities of devices
is not new, in fact, dedicated infrastructures for cloud com-
puting use the combination of many mid-ranged devices to
offer processing and storage resources that exceed those of
an off-the-shelf device. We call an infrastructure dedicated
when it is being actively maintained by a company, it is
fault-tolerant (inherently using replication), highly available,
and the primary purpose of the devices that compose it is to
collaborate in solving a task (as opposed to being personal
devices or a workstation). In this kind of infrastructure,
particularly for combining storage capacity from multiple
devices for data modeled as files and folders, we have what
is called a Distributed File System.

Distributed File Systems (DFS), according to Sinha [12],
offer an abstraction similar to that of a conventional file
system for a distributed environment where devices are
inherently dispersed. It supports remote information sharing
(where a file can be accessed transparently by any node in
the system), user mobility (the user has the flexibility to
work from any node at any time), availability (the system
should be available despite the eventual failure of a node —
which usually falls back to the infrastructure the system is
installed in), and diskless workstations (the system can be
accessed by machines with no long-term memory). Besides
that, a good DFS should also be transparent in terms of
structure (nodes can be added and removed from the system
without impacting its use), performance (the system has to
be at least as fast as a conventional file system), and location
(the physical location of nodes shouldn’t impact the system’s
performance).

Considering the concept of DFS and the need for a
collaboration model for edge devices, it is reasonable to
ask: (i) What are reasonable assumptions for an environment
composed of edge devices and how do they impact a DFS?
(i) Which kind of file system semantics should and could
be supported? (iii) What are the main design issues and
implementation challenges for a DFS in such environment?

II. RELATED WORKS

The concept of a distributed file system is not new, in fact,
there are many examples of such in the literature. Distributed
file systems tend to vary in terms of geographical scalability,
data consistency, architecture, and others. In this section we
explain some of these concepts and do a brief overview of
some publicly available distributed file systems.

TABLE I
COMPARISON OF AVAILABLE DISTRIBUTED FILE SYSTEMS

File System File Consistency | Geographical Scalability | Centralized
Google File System [4] Strong ‘WoL YES
GlobalFS [8] Strong SoW NO
XTreemFS [2] Strong WoW NO
QuantcastFS [7] Eventual ‘WoL YES
AFS [10] Weak WoW NO
PVES [9] Read After Write ‘WoL NO

In the context of distributed systems, we say that a
system is geographically scalable when it is able to run
— and perform relatively well — even when the nodes that
compose the system are physically distant from one another.
In Pacheco et al. [8], geographical scalability is measured as
geographical scaling potential and is divided in three levels:
systems that work on LANs (WoL), systems that support but
perform poorly in wide area networks (WoW), and systems
that scale in WAN (SoW). In this work, we will use this
classification to refer to geographical scalability.

Since files are accessed from multiple nodes, distributed
file systems use the concept of consistency to establish
semantics when there are modifications to a file. As stated
in [3], we say a system has strong consistency when all the
machines are only able to access — and modify — the latest
version of a file, in other words, the file is always up-to-
date from every perspective. Weak consistency means that
different nodes will process file modifications in (possibly)
different orders, that is, different nodes might see different
versions of a file at a given time.

According to Tanenbaum and Van Steen [13], when a
system offers eventual consistency it means that, if there are
no further changes to a file, eventually all nodes will see the
updates done by every other node. Finally, read-after-write
consistency (or read-your-writes, according to [13]) makes
sure that data written by a process, p, will be immediately
available to any successive read operation by p.

These models for file consistency are used when the
systems supports replication, that is, there are multiple copies
of the same file stored in different machines. Along with
file consistency for replication, a DFS must, even if it does
not support replication, establish semantics for file sharing,
since shared access to files is inherent to the definition of
DES. File sharing semantics can be, according to [13]: UNIX
semantics, where every operation is instantly visible by every
process; Session semantics, where no operation is visible
to other processes until the file is closed; Immutable Files,
where no modification is possible; and Transactions, where
all changes occur atomically.

An important aspect of the architecture of a distributed
file system is whether it is a centralized architecture or
a decentralized one [13]. Having a centralized architecture
determines whether the system has a master node — that
oversees most operations and coordinates the other nodes
— or if the system has equally powered nodes that work
together.

As seen in table I, there are distributed file systems with

II

different characteristics available in the literature. Despite
being common sense that a distributed file system with strong
file consistency and SoW scalability is more desirable due
to an easier to comprehend operation, it can be seen that
achieving both is very difficult. Out of the given examples,
only GlobalFS [8] was able to provide both.

III. SYSTEM MODEL

An environment composed of edge devices is different
from the typical environment for distributed computing in the
sense that the devices that compose it are constantly moving
and changing their state with regards to their connectivity.
Due to this, some assumptions are made regarding this
kind of environment such that they must be respected for a
consistent execution of any system. From this point forward,
we will refer to an environment composed of edge devices
as an edge-based environment.

First, we assume an environment with no global time and
no clock synchronization. Message delivery can be affected
by unknown delays and message loss is also possible, though
fair-loss is assumed. Lack of response is not considered
a failure in this work, but it is interpreted as temporary
unreachability. Unreachability, here, is the state where two
machines cannot communicate due to the lack of routing
paths between the two across the network.

Second, we assume that edge-based environments must
frequently deal with a high churn rate. In other words,
devices that compose this environment are constantly mov-
ing in and out of reach of each other from a network
connectivity perspective. Here, the term churn does not
apply to birth/death of processes, but to their ever changing
reachability status (though birth/death rate could become
high as well). We also assume that this environment will
inevitably experience episodes of network partitioning. We
say that a partition occurs when distinct groups of devices
become completely unreachable from one another, that is, no
device from one group is able to reach any device from the
other.

We also assume the lack of centralization, that is, a
system that runs on an edge-based environment can’t assume
the existence of a highly reliable device to oversee most
operations that happen during the execution. This would
mean that such a device would have to be reachable from
every other device every time an operation were to be done.
Due to the high mobility of edge devices, this would be
counter-intuitive.

Since there are many scenarios where some devices are not
able to connect to one another, providing strong consistency
would, likely, be a very complex task and could impact the
system’s operation negatively. We do, however, assume that
any correct device (say one that won’t leave the system
forever) will, eventually, reconnect with a sufficient number
of devices for a sufficient amount of time such that it is
available for making progress. Thus, a system installed on
an edge-based environment should be able to offer eventual
consistency.

IV. PROPOSED SOLUTION

Considering the problem of providing distributed file
system (DFS) capabilities in an infrastructure composed of
edge devices, we developed a DFS specifically for this kind
of environment. Our solution was built to withstand the
characteristics presented by the system model as follows:

A. High Churn Rate

The division of the task of storing files is inherent to the
very concept of DFS. In this sense, when two devices move
out-of-reach of one another they can no longer rely on the
possibility of reaching that device’s share of the task, that is,
if there are files stored in one device, then those files become
unavailable for devices that have gone out-of-reach.

Considering this, the developed DFS utilizes a module
for detecting device reachability, that is, a module that
continuously updates itself to provide information on which
devices are reachable and which are not. When a device
becomes unreachable, the DFS hides all of the files that are
stored in that device since any kind of operation over those
files wouldn’t get completed.

B. Lack of Centralization

Since assuming the existence of a central device to coor-
dinate the system is less than ideal, the devices that compose
the DFS are responsible for spreading the information regard-
ing which devices are a part of the system and which files
are available on the system, that is, the system’s metadata.

The devices that compose the system are named members,
and each member stores references to a set of other members
it knows are a part of the system. Whenever a new device
enters the system it gets introduced to the other members
by receiving another member’s list. Whenever a member’s
list changes, that member is responsible for propagating the
changes to the other members it knows.

In terms of the of files available in the system, they are
called the DFS’s logical hierarchy. Again, each member is
responsible for maintaining a registry of the current state of
the hierarchy. However, the changes are only propagated if
they affect the files owned by that member, that is, they are
physically stored on that device.

C. File Ownership

The developed DFS, despite being operable from every
device, has to have it’s files physically stored in one or more
devices (in the developed DFS, it is always one). We say
that the member that stores a file is that file’s owner.

I

A file’s owner is responsible for managing that file’s meta-
data and sharing any modifications with the other members.
Say a user wants to rename a file, then that intention has to
be sent to the owner so that it can change the file’s name
and correctly propagate that change. Other members cannot
execute this operation without the owner’s consent.

When two members become unreachable from one an-
other, the files they own become unavailable to the other
member. This happens so that the user cannot attempt to op-
erate on a file whose owner is unreachable and, thus, cannot
consent to any operations. Folders are only an organizational
mechanism, so they are not owned by any member.

D. Network Partitioning

With the previous mechanisms in place, we can assume
that users can only operate with files that are, indeed,
accessible to them. So, if a member loses connectivity for
whatever reason (it gets lost, stolen, crashes, etc) the other
members will update to a consistent state (where unreachable
files are not available to the users). If there is a partition,
then members will see different hierarchies, since different
portions of it are available to them.

However, once previously disconnected members recon-
nect (the partition is undone), the DFS becomes responsible
for updating the logical hierarchy to a correct state (where
every reachable file is also available). When this kind of
situation occurs, we say that members are synchronizing the
state of their hierarchy.

The synchronization of two hierarchies may result in
conflicts, that is, two files at the same path owned by different
members. In that case, the system keeps the entries for both
files in the hierarchy but resolves their names to something
unique to avoid confusion. Once the conflict has been solved
(one file has been renamed, moved or removed) the original
name of the file is restored.

E. Consistency

Regarding consistency, we say that the developed DFS is
eventually metadata consistent. As assumed by the system
model, correct devices will eventually reconnect for making
progress. When that happens, the system will synchronize
the multiple versions of the logical hierarchy and of the
members list among all connected devices resulting in the
same metadata on all members.

In terms of data (the files themselves) the system’s con-
sistency depends heavily on it’s implementation. The current
implementation of the developed DFS uses NFS (which is
detailed in a later section) for remote file access, which offers
weak consistency, that is, multiple users can see different
versions of the same file at the same time. The last write to
a file is the one that remains, even if some previous writes
were not received by the process that wrote last. However, if
the module for remote file access were to be re-implemented
as something that supports eventual consistency, for example,
than the DFS would be eventually consistent regarding files.

FE Security

The developed DFS assumes that the system will be
installed on trusted devices that communicate over a trusted
network and does not foresee any kind of byzantine be-
haviour. Considering that the members of the system must
be able to send and receive information to one another, we
assume they are all routable, that is, that they possess a
routable IP address to reach them. With that, we can assume
that the developed system will, most likely, be installed for
use in local networks, which are usually trustable.

If that is not the case, the system could be secured to some
extent by creating encrypted tunnels between the members
for communication. This would prevent, to some extent, that
attackers create messages in the name of another member
of even that they eavesdrop on the process of sending and
receiving file content.

A more robust security model for the developed DFS lies
as future work.

G. Replication

In the developed DFS (and in distributed systems in gen-
eral), maintaining a consistent state across multiple processes
is challenging. Adding to the fact that, in this system model,
processes may be unreachable and that modifications could
be made from any device at any time, we end up with
an intricate set of constraints. The addition of support for
replication, inherent to fault-tolerance, is directly affected by
such constraints.

Due to a limited amount of time for the development of
this work and given the scope of the problem, support for
replication of files was not included. Despite that, replication
would come as a very important addition to the improvement
of the system’s reliability and, therefore, lies as quite impor-
tant future work.

V. ARCHITECTURE

The architecture of the developed DFS is composed of
three main layers: the interface layer, the logical layer,
and the file management layer. Due to time and resource
constraints, as well as aiming at an easy integration with
existing standards, we decided to use pre-existing tools

Fig. 1.

Overview of the system architecture

v

for the interface and file management layers, in this case,
respectively, FUSE and NFS. Both these tools provided just
enough functionality so that a viable prototype could be
developed. Despite having to, sometimes, adapt to how these
tools work, the layered nature of this architecture allows
for changing the implementation of any layer with relative
ease. An overview of how the layers are structured in the
architecture can be seen in figure 1.

A. FUSE

The Filesystems in Userspace (FUSE) [5] library allows
for the creation of file systems without having to deal with
kernel code on linux-based systems. One of the primary uses
of FUSE is to provide different kinds of information under
the paradigm of files and folders. For example, a system
could show different reachable networks as folders and the
hosts connected to each one as files within. Operations like
moving a file to a different folder could mean that a host
is supposed to get disconnected from that network and be
connected to a new one.

FUSE proved to be very useful in the development of the
DFS because it requires only that some functions are imple-
mented for dealing with common file system operations like
read, write, get attribute, etc. In our case, the implementation
of these functions would retrieve the entry for a given file
from the metadata and resolve the actual path to where that
file was stored and, only then, actually perform the requested
operation. How to retrieve the file’s entry and how to access
the file if it is stored in another machine are responsibilities
of the other layers.

When executing, the fact that FUSE was used is mostly
transparent, with the DFS being shown similarly to an exter-
nal device (like a thumb drive, for example). Since it is seen
as a device by the file system, it will get properly unmounted
before shutting down, allowing for proper memory cleanup
to take place.

B. NFS

The Network File System (NFS) [6] is a tool that allows
external hosts to access a given portion of a machine’s file
system. It allows the original machine to specify which
hosts are able to see the files, which are able to modify (if
any), and some other parameters regarding consistency and
permissions. Files shared via NFS are seen as regular files on
the external hosts’ file systems, which allows applications to
use such files with no regards to whether they are physically
stored in the same device or not. This is another great
advantage of NFS: every operation happens over the internet,
without requiring the external host to copy the file to a local
drive. Under the right conditions, dealing with files over
a network is not noticeably less performant than dealing
with local files, which allows machines with reduced storage
capacity to access a larger amount of data.

NFS proved useful in the development of the DFS because
it allows for a simple way of accessing files on different hosts
through the network. That means we didn’t have to worry
about developing protocols to send and receive chunks of

data ourselves, that was already handled by NFS. Despite
all these benefits, NFS does lack more robust mechanisms
for identifying the hosts inside a network (avoiding dop-
pelgingers) and for securing it’s traffic (NFS packets are not
encrypted). There are a couple of recommended solutions to
these problems like using the Kerberos [1] protocol for host
identification or using ssh tunnels for secure communication.
The Kerberos protocol requires a centralized infrastructure,
which is not the case of edge-based environments, though
the use of ssh tunnels could be explored as future work.

C. Logical Layer

The system’s logical layer is, arguably, it’s core. It’s
also, the system’s bottleneck, that is, most of the system’s
performance is related to how this layer performs.

This layer is responsible for handling the metadata, which,
in turn, is what dictates the system’s behavior. The metadata
can be broken into two main areas: members and hierarchy.

1) Members: Because of the high churn rate inherent to
the edge-based environment, the list of members that com-
pose the system is ever changing. Besides that, the system
must also track the reachability of each member so that some
action can be taken when any of them becomes unreachable
(make the files it owns unavailable, for example).

Each member is represented by an unique name, an IP
address and a port number. The IP and port combined should
point to the machine where that member is executing at a
port that it is monitoring. This information is provided by
the member when it starts executing.

2) Joining the system: In order to join the system, a new
member must, first, request a name from a member that is
already established in the system. Since this request can be
made to any member, that member must guarantee that no
other member has been given that same name before. This
is solved by the name protocol, explained in a later section.
After being named, the two members add each other to their
respective lists of members which, as the name suggests, is
stored as a list in memory.

The list of members, besides storing all the members
known, is also identified by a sequence number. Whenever
the list changes (a member gets added) the sequence number
increases. This is used so that other members can know when
there are (possibly) new members it does not know of in
someone else’s list. Members periodically poll each other
for this number and, when they notice that it has increased,
request that member’s current list. This flow is handled by
the sync protocol.

3) Detecting Reachability: In the field of distributed
systems it is common to use failure detection modules to
assess the state of other members and handle any failure
that may happen. In the developed DFS this is no different,
though we refer to our failure detection module as a device
reachability detection module, since we are not detecting
failures per se, but detecting whether a member is within
reach of another, which could be impacted by, but is not
necessarily related to, an eventual failure. Here, messages
are sent periodically to the other members. Receiving such a

message means that the sender is active and within reach. If
a message like this is not received from a certain member for
some time, it is assumed that that member is out of reach
and the proper actions are taken. These messages are sent
even to members considered out of reach, since they could
reconnect at any time as stated by the system model. This
behavior is implemented by the ping protocol.

4) Hierarchy: In regular file systems, the file/folder hi-
erarchy is somewhat related to the way the data is stored
physically. In the developed DFS files are stored in different
machines independently from where they are located in the
hierarchy. For this reason, each file in the hierarchy must
have an individual entry in memory stating which member
owns that file and it’s physical name, which does not have to
match the name in the hierarchy. Because the names don’t
have to match and the location in the hierarchy does not
reflect the physical location of a file, the hierarchy is also
referred to as logical hierarchy.

The logical hierarchy is stored in memory as a generic tree
data structure where each branch node is a folder and each
leaf is a file. That way, a file path can be used to traverse
the tree towards that file’s entry.

5) Propagating Hierarchy Changes: The logical hierar-
chy follows a similar mechanism to the list of members for
tracking changes — it uses a sequence number — however,
each member manages a different number which only reflects
the changes regarding the files owned by that member. Say a
file is renamed, then the sequence number will only change
for the member that owns that file. This stops members from
propagating the same change multiple times and, possibly,
causing sequence numbers to grow indefinitely. Once a
member receives a larger number than what it knew to be
a member’s sequence number, it requests a synchronization
with the sender. The sender, then, sends a description of it’s
version of the hierarchy tree. For the same reason as before,
the tree that gets sent includes only files owned by the sender
— the other files/paths are not included in the message. The
synchronization of hierarchy trees is handled by the sync
protocol. The combination of multiple hierarchy trees into
the logical hierarchy is illustrated in figure 2.

6) File Operations: Whenever the interface layer, in this
case, FUSE, sends a call for the creation of a file, the member
that is processing this call must determine where to store that
file and how to place it in the logical hierarchy. The first step
is to check for a name conflict: If there is a file placed in the
same path as the one being created and both files share the
same name, the call for file creation is cancelled and an error
is returned. If there are no conflicts, the current member uses
a member selection heuristic to determine which member
will become that file’s owner. The current heuristic randomly
selects a member from the list of members and forwards
the call to it. Since calls from the interface layer block the
execution of the file system until they are responded, the
current member must wait for a response from the assigned
file owner before it can respond the interface layer’s call.

The assigned file owner, once it receives the request for
file creation, physically creates the file locally and adds it to

Overall System Hierarchy

Machine A Machine B

Fig. 2. Multiple trees combine into a single logical hierarchy

the logical hierarchy from it’s point of view. The information
regarding this new file will later be propagated using the hier-
archy change propagation mechanism explained previously.
Once this is complete, the assigned owner responds with a
message of success or an error code which will be responded
to the local interface layer. Errors can include not enough
memory, name conflicts, invalid path, and others.

As stated in the developed DFS’s model, any changes
to a file must be handled by it’s owner. For this reason,
both deletion and renaming execute in a similar way to file
creation, but instead of choosing a member according to a
heuristic, since the files already have an owner, then that
owner is sent the call. The protocol that handles these three
operation (creation, deletion and renaming) is called freq.

Since the physical organization of files does not necessar-
ily reflect that of the logical hierarchy, whenever a file is
open it has got to have it’s name translated from logical
to physical. In other words, the logical name is used to
traverse the hierarchy and to retrieve the file’s owner and
the associated physical name (used by the file management
layer). Once that is done, a standard file system call is made
for opening the physical file. Further operations, such as
reading and writing, are done directly to the file handler,
which bypasses the logical layer and are handled by the file
management layer using standard operating system calls.

7) Handling Name Conflicts: Since members can be out-
of-reach while performing file operations, it might happen
that they inadvertently create a state of conflict, that is, create
equally named files at the same location. Since they cannot
communicate with one another, they cannot warn each other
about the conflict that is about to happen, so both operations
are allowed. This creates a situation where, when members
synchronize their hierarchies, they end up with files with the
same name at the same location but with different owners
(and different physical counterparts).

Suppose there are three disconnected members: A, B and

VI

C. Say A creates a file named Jupiterjpg at the root of the
file system and connects momentarily with B for enough
time so that they synchronize. Next, C creates a file with
the same name also at the root of the file system and also
connects for enough time to synchronize with B. Now, B
has two equally named files from different owners and must
determine how to display them to the user. Most operational
systems will not allow for two different files to be named
the same at the same location and, even if they did, it would
cause the user a lot of confusion.

For these kinds of problems, the frequently proposed
solution is to keep one of the files and to delete the other.
However, due to network partitioning, a solution like this
could end up causing members that are connected to only
one owner to not see either file, because one of them got
removed and the other is not accessible. In our example,
if A’s file got chosen as the one to keep and C’s file got
removed, then C' would not be able to access either file.

The developed DFS solves this problem by flagging the
files as being conflicted. This allows the interface layer to
present both files in a way such that the user can recognize
the conflict but, at the same time, operate with both files.
Whenever this conflict is solved, either by renaming or
deleting one of the files, the conflicted files get unflagged.
Whenever the logical hierarchy gets manipulated, checks
for conflicted files happen to make sure they are correctly
flagged (or unflagged).

VI. PROTOCOLS

As mentioned in the previous sections, protocols are
used for communication between members and are the ones
responsible for solving many issues that may appear. Each
protocol is identified by a four-letter name that is written at
the beginning of every message in the protocol so that it can
be routed correctly within the application. In the following
sections each protocol is presented along with an explanation
on why it solves eventual problems.

A. Protocol name

When a member wants to join the system it must, first,
introduce itself to another member already established in the
system. However, members are identified by their names, and
a brand new member isn’t named before joining the system.
Even if a name got picked for the new member, there could
be a problem where two new members are named the same
— which is undesirable. For this reason, a new member starts
executing without a name and, when it introduces itself, it
does so with a placeholder name (even empty) using the
name protocol.

The name protocol consists of a newcomer (a member
that wants to join the system) and a host (a member that
is already established in the system). First, the newcomer
sends a message to the host containing it’s IP address and a
port number that it is listening at. The host, then, generates
a unique name for the newcomer by appending a locally
unique sequence of characters to the end of it’s own name.
The names are built in a hierarchical way (the host’s name is

contained in the newcomer’s name) so that, since a member’s
name is unique, uniqueness can be assumed inductively.
Once the name is generated, a message is responded to the
newcomer with it’s newly assigned name and the name of
the host. After this exchange is complete, both members can
add each other to their list of members, which triggers the
other protocols.

B. Protocol ping

Once two members have been properly introduced to one
another, they begin to periodically send each other messages
containing their names to confirm that they are still connected
and within reach (this is part of the device reachability
detection module). After a certain amount of these periods
has passed (in the current implementation, 4) without a
message being received from a member, that member is
flagged as inactive. Whenever a message does get received,
this count gets reset. This process repeats itself for the
lifetime of the member.

C. Protocol sync (Members)

After a member has been introduced to the system it must
be updated with the current state of affairs. Besides that,
all members other than the host must also be introduced to
the newcomer. As stated before, this is done by providing
a sequence number that represents the current version of a
member’s list of members. For performance reasons, this
number is attached to the ping protocol messages. Once
a member (the receiver) receives a sequence number from
another member (the provider) that is greater than the ones
it has on record, it sends the provider a sync request message.

A sync request message includes the receiver’s name and
a flag indicating that this message is a “request”. Once a
request is received by the provider, it generates a message
reporting the current state of it’s list of members which, in
turn, gets attached to a sync reply message along with the
provider’s name and the current sequence number of the list
of members. This message gets sent to the receiver. Once
the message is received, the receiver compares the received
list with it’s current list and updates the sequence number
on record for the provider. If the received list contains any
members that are not contained in the current list, then the
receiver adds those to it’s own list and updates it’s own
sequence number. If there are no new members, than this
number does not get update. This happens in order to avoid
indefinite propagation of lists of members.

D. Protocol sync (Hierarchy)

A very similar mechanism to the one used to synchronize
lists of members is used to synchronize file hierarchies. For
this reason, the synchronization of hierarchies also happens
under the sync protocol. The main difference from syncing
lists of members is that, this time, the sequence number
represents the current state of the logical hierarchy regarding
only the files owned by that member. Since other members
cannot modify files owned by another member without it’s

VII

consent, a synchronization of the hierarchy with another
member will never impact the sequence number.

Another big difference between the two uses of the pro-
tocol is the that the syncing is more complex than simply
adding the missing entries. It starts by reading the top of
the received hierarchy and, for every folder, verifying if it
also exists in the current hierarchy. If it does not, then it
gets added at that location. The contents of a folder are
synchronized all at once.

Since the logical hierarchy is stored in memory as a linked
structure, consider the contents of a folder as a linked list.
Whenever a folder is going to get synced, there are two
linked lists: the current list of files in the hierarchy and a list
of the files owned by the provider. We start by pointing at the
first file in each list such that it is owned by the provider. In
the received list, it’s going to be the first item. In the current
list, it might be anywhere (if at all). If the two files share the
same name, they are the same file, which means that the file
in the current list should remain there. If that is the case, the
protocol stores the sequence number for the synchronization
along with the current file and moves on.

If the files are different, then it can be assumed that the
owner of the files is the source of truth, that is, it means that
the current file can be removed. In that case, the provided
list will not point to the next item in the following step, it
will remain in place to assure that the file gets synchronized
properly. If the current list points to an empty reference, that
is, there are no more items owned by that member in the
current list, then every file from that point forward in the
provided list are new files, so they get appended to the end
of the current list. If the provided list points to an empty
reference while the current list does not, they are considered
different, so the current one gets removed (and so will all of
the following files owned by the provider in the current list).
This process repeats until both lists are pointing to empty
references. The process of syncing a folder is illustrated in
figure 3.

E. Protocol mont

The mont protocol exists exclusively because of the use
of NFS. This protocol is used so that members can request
access to a folder being shared by another member via
NFS. The mont request message includes the name of the
requesting member, which should already be included in the
requested member’s list of members. If it is not, then the
message is ignored. Once a request arrives from a known
member, the requested member changes the proper NFS
settings so that the requesting member’s IP becomes able
to access the requested member’s files. Once that is done,
a mont reply message is sent to the requesting member
informing that it now has access to the requested member’s
NFS shared files. The requesting member then proceeds to
actually mounting the remote files, that is, it makes them
available as if they were regular files in the underlying file
system, even though they are stored remotely.

Current

Current

— — —
Provided Provided
Same flle, Different files,

1

move on

1

B gets removed

Current Current

W) e el e

1 1+

Provided Provided

Both are empty,
sync is complete
for current folder

re— Current points to — —
empty reference,

f C gets added

Fig. 3. Overview folder sync process

FE. Protocol freq

When a member wants to modify a file that it does not own
or it wants a new file to be created but it is decided that some
other member will own it, it has to contact the owner (or the
assigned owner) of that file so that the operation can proceed.
The freq protocol (which stands for file requests) handles the
communication between members when one of them wants
to perform one of three kinds of operation: creation of a
new file, deletion of a file, or renaming of a file. The request
message for this protocol includes the path of the file to be
operated on and the type of operation (add, delete or rename)
at a minimum. If the operation is a rename, the new name
is also included.

Unlike the other protocols, the freg protocol is the only
blocking protocol, that is, the communication is done over a
reliable connection that blocks the process until it receives a
response. That means that whenever one of these operations
is taking place, no other operation is happening on the
member that requested it. This is so because the interface
layer, FUSE, expects a return value to any call it makes
reporting either success or failure of the operation and,
depending on the result, this affects what the user sees. Since
the protocol waits for the operation to be completed on the
file’s owner, either as a success or as a failure, it is able to
provide such information to FUSE which, in turn, provides
a coherent user experience.

Any of the possible operations, if they succeed, will result
in a change to the requested member’s hierarchy. Those
changes will be properly propagated using the aforemen-
tioned sync mechanism.

G. Handling the system model

Considering the system model, there may be scenarios
where some members experience network partitioning or
message loss while executing some of the aforementioned
protocols. Even though the execution may get interrupted

by such events or some messages may get sent more than
once, the developed DFS guarantees that every member will
remain in a consistent state, as we argue below.

Regarding synchronization, the protocol sync only exe-
cutes when the complete information is available, that is,
once the logical hierarchy from the other member has been
entirely received. If that is not the case, say because of
partitioning happening during the information exchange, then
the protocol’s execution gets interrupted and the logical hier-
archy does not get affected. If a sync request is sent multiple
times, say due to network delays causing the member to retry,
then there will be no side effects other than multiple replies
being sent by the target member. If multiple sync replies
are received, then the protocol relies on the information’s
sequence number to avoid synchronizing old information into
it’s metadata. Replies with a sequence number smaller than
the current one are not considered for synchronization. Since
they deal with different sets of files, replies from different
members can be received, and synced, in any order.

For file requests, the protocol freq executes in a blocking
manner, that is, if there is a partition that makes mem-
bers executing this protocol unreachable, then they would
be blocked until a reconnection happened. To avoid such
situations, freq relies on timeout mechanisms provided by
the underlying network protocol, in the case of the developed
DEFS, TCP.

Given that members are in a consistent state before the
execution of the protocol, the freq protocol guarantees that,
even if the members become unreachable and the protocol
halts prematurely, their state will always end up being
consistent. This is done by executing each step that modifies
the metadata locally, that is, in a way that no communication
with the other members is required. This guarantees that,
even if no message can be sent or received, the steps are
completely executed (we are not considering device crash
here).

If a file request gets sent multiple times, the very nature of
the operations will make it idempotent, that is, creating a file
that is already created, deleting a file that has already been
deleted and renaming a file to a name it already has are all
naturally idempotent operations. If a delay large enough is
assumed so that a message from another member is received
in between these multiple messages, nothing can be assumed
regarding idempotence since the state could have changed
before one of the multiple messages is processed. Even
though the state in unpredictable, since messages are being
fully received, the state will not end up inconsistent.

VII. CONCLUSION

The development of a distributed system increases in
complexity relatively to complexity of the system model. In
an edge-based environment, where there are many different
possible scenarios, developing a distributed system that re-
mains in a coherent state during its execution can be a very
complex task. When the distributed system operates on such
a fundamental aspect of modern computing, file systems,
on top of all the difficulties brought by the system model

VIII

there are many pre-conceived expectations on how the system
should behave and perform.

In the developed DFS we have proposed solutions to many
of the problems that appear in the presented system model.
The development of a prototype also helped demonstrate the
correctness of most of these solutions and helped us adjust
some of them during the conception phase of this project.
The developed system shows some limitations due to the use
of pre-existing tools to solve some of the functions of the
system and due to the many different scenarios that have
to be considered in the given system model. Overall, given
the limited time span available for the development of this
project, the tradeoff is acceptable.

Some important tasks lie as future work such as a proper
security model and support for replication, required for
eventually making the developed DFS fault-tolerant. Despite
that, we believe that the developed DFS can be used not only
as tool on it’s own, but as a reference for further development
of distributed file systems and, specially, of systems for edge-
based environments.

VIII. ACKNOWLEDGEMENTS

We would like to thank professor Sérgio Johann Filho
for his help in the development of this work. Because of his
suggestions regarding the system’s architecture, the Linux
kernel and the use of FUSE, we were able to develop
a prototype that is compatible with modern UNIX-based
operating systems.

We would also like to thank the help of Brian Yip in the
development of the algorithm for resolving file conflicts and
the help of André Antonitsch while validating the model
against it’s many possible scenarios.

REFERENCES

Carlisle Adams. “Kerberos Authentication Protocol”.
In: Encyclopedia of Cryptography and Security.
Springer, 2011, pp. 674-675.

Michael Berlin. “XtreemFS: A Cloud File System”.
In: Almere, Nizozemsko (2012).

Alan D Fekete and Krithi Ramamritham. Consistency
models for replicated data, Replication: theory and
Practice. 2010.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The Google file system. Vol. 37. ACM, 2003.
FUSE: File System in User Space.
https://github.com/libfuse/libfuse.

Bill Nowicki. NFS: Network file system protocol spec-
ification. 1989.

Michael Ovsiannikov et al. “The Quantcast File Sys-
tem”. In: Proceedings of the VLDB Endowment 6.11
(2013), pp. 1092-1101.

Leandro Pacheco et al. “GlobalFS: A strongly consis-
tent multi-site file system”. In: Reliable Distributed
Systems (SRDS), 2016 IEEE 35th Symposium on.
IEEE. 2016, pp. 147-156.

(1]

(2]
(3]

(4]
(5]
(6]
(71

(8]

IX

(9]

[10]

[11]

[12]

[13]

Robert B Ross, Rajeev Thakur, et al. “PVFS: A paral-
lel file system for Linux clusters”. In: Proceedings of
the 4th annual Linux showcase and conference. 2000,
pp- 391-430.

Mahadev Satyanarayanan. ‘“Scalable, secure, and
highly available distributed file access”. In: Computer
23.5 (1990), pp. 9-18.

Weisong Shi and Schahram Dustdar. “The Promise of
Edge Computing”. In: Computer 49.5 (2016), pp. 78—
81. DOI1: 10.1109/mc.2016.145.

Pradeep K Sinha. Distributed operating systems: con-
cepts and design. PHI Learning Pvt. Ltd., 1998.
Andrew S Tanenbaum and Maarten Van Steen. Dis-
tributed systems: principles and paradigms. Prentice-
Hall, 2007.

