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Abstract—The analysis of Confocal Laser Endomicroscopy (CLE) 
is one of the techniques used for diagnosing gastroenterological 
diseases. However, the manual analysis of such images requires 
training and experience and will often lead to wrong diagnostics. 
This work explores the use of attributes taken from classic texture 
description techniques, gray level co-occurrence matrices 
(GLCM) and local binary patterns (LBP), as inputs for classifiers 
to separate images from 3 common gastroenterological diseases, 
with 262 images. A baseline classifier was trained for the 10 
smaller groups and two others were trained using GLCM and LBP 
attributes. Overall, the benefits of using texture analysis 
techniques and attributes can be observed as an increase in 
accuracy and consistency of the results.  

Keywords—image processing; machine learning; esophageal 
cancer; 

I.  INTRODUCTION 
Barrett's Esophagus and associated adenocarcinoma have 
emerged as a major health care problem over the last two 
decades [7]. It is also one of the major complications of 
gastroesophageal reflux disease commonly encountered in 
gastroenterology clinics [3]. 
One of the techniques used to diagnose the Barrett’s Esophagus 
disease (and associated adenocarcinoma) involves capturing 
images from a Confocal Laser Endomicroscopy (CLE). The 
procedure helps to diagnose cancer in its premature stages, 
which can help preventing chemo and radiotherapy treatments, 
while also generating high quality images. 
However, a pathologist is still required to analyze the images 
after they have been captured. This requires significant training 
and experience. According to Salomao et al [1], many 
diagnostics are downgraded by experts and many pathologists 
often over diagnose patients. This shows that this kind of 
diagnostic is still very subjective to the pathologist that gave it. 
The need for a new technique to analyze CLE images comes 
from a need for giving more precise and non-subjective 
diagnostics to patients. In this paper, the use of different 
attributes for describing image textures as classifier inputs is 
explored, more specifically, the impact of gray level co-
occurrence matrices and the use of local binary patterns in the 
classification process of common gastroenterological diseases 
is studied. The diseases explored here are: Gastric Metaplasia 
(GMP), Barrett’s Esophagus (BAR) and Neoplastic Mucosa 
(NPL), also known as Esophageal Cancer. 
For training and validating each of the classifiers, a dataset of 
CLE images of the three diseases was used. However, the 

dataset does not contain enough images to make deep learning 
techniques viable and it does not contain a balanced number of 
images for each category. The workaround for these issues is 
also explored. 
This paper is organized as follows: section II gives some 
background on each of the diseases, section III analyzes the 
current state of related research, section IV introduces the 
dataset used in the experiment, section V present the developed 
methods and section VI discusses the results obtained in the 
experiments. 

II. BACKGROUND 

A. Gastric Metaplasia 
Also known as Gastroesophageal Reflux Disease, the Gastric 
Metaplasia (GMP) is characterized by the return of content 
from the stomach to the esophagus due to a failure in the 
mechanisms that stop that kind of behavior [20]. This kind of 
reflux is, most of the time, composed of gastric acids that are 
not well handled by the mucosa (internal layer of the 
esophagus) and causes it to get inflamed. Figure 1 shows an 
example of a GMP image obtained using CLE. 

B. Barrett’s Esophagus 
Also known as Intestinal Metaplasia, the Barrett’s Esophagus 
(BAR) disease is characterized by the change in esophageal 
cells due to prolonged lesions [20]. This disease may be seen as 
an adaptation from the lesions caused by reflux since the 
changed cells are more resistant to the acid pH of the gastric 
reflux. It is characterized by a pink-colored region observed in 
the esophagus. Figure 1 shows an example of a BAR image 
obtained using CLE. 

C. Neoplastic Mucosa 
Also known as esophageal cancer, Neoplastic Mucosa (NPL) is 
a disease where malignant cells start developing inside the 
esophagus [20]. Due to the lesions caused by GMP and BAR it 
is very common to see patients with esophageal cancer having 
a history of contracting the other two diseases. Figure 1 shows 
an example of a NPL image obtained using CLE. 

III. RELATED WORK 
The usage of image analysis for classifying gastroenterological 
diseases has been explored by some published researches [2-9]. 
An analysis was conducted to assess the current state of 
research in the field. 



Van der Sommen et al [2], describes a method that relies on 
machine learning to do the classification. First, the images are 
searched for regions of interest: the lumen, intestinal juices and 
specular reflections. Then, the images are split into 50x50 pixel 
blocks and the mean and variance of each block is calculated. 
They are used as inputs for a Support Vector Machine (SVM) 
which predicts whether a block shows neoplasia or not. The 
paper claims that the method presented gives results with 0.83 
for both sensitivity and specificity on a per-image analysis. 
Given a patient’s multiple exams, the system reached 0.86 and 
0.87 of sensitivity and specificity, respectively. 
In Dunn et al [3], another machine learning centric algorithm is 
presented for doing the classification. The paper aims to 
compare two techniques for classification: Nucleotyping (NT) 
and Image Cytometric DNA Analysis (ICM). NT uses a set of 
35 attributes taken from each image’s Gray Level Co-
occurrence Matrix, Grey Level Run Length Matrix, and Grey 
Level Entropy Matrix. Most are attributes regarding the 
image’s texture. ICM, on the other hand, was performed by an 
automatic image cytometric analyzer, which captures and 
processes the images on its own. The classifier using NT 
showed 83% accuracy while the ICM analyzer showed 73%. A 
combination of both methods yielded 84% accuracy. 
Münzenmayer et al [4], presents an algorithm for a content-
based image retrieval (CBIR) framework. It uses color-texture 
analysis in order to determine images with and without lesions. 
In order to develop better queries, it uses a relevance algorithm 
to steer the search during the feedback loop. This paper 
measures its success using inter-rater reliability measurement 
of kappa = 0.71 [5] on a database of 390 images. 
In Sabo et al [6], instead of analyzing endoscopic images the 
analysis is done on biopsies. From the given biopsies, 
computerized morphometry is used to extract attributes such as 
size, shape, texture, symmetry and architectural distribution of 
the epithelial nuclei. 
These attributes were used to classify the images as negative for 
dysplasia (ND), low-grade dysplasia (LD) and high-grade 
dysplasia (HD). Based on these attributes and their 
characteristics for each category, a two-layered feed forward 
back-propagation neural network was developed. It used a 
dataset of 152 self-collected images where 97 were used for 
training and 55 for evaluation. The neural network was able to 
differentiate ND and LD with an accuracy of 89% and 
differentiate LD and HD with an accuracy of 86%. 
Qi et al. [7] used a CAD system for classification of dysplasia 
in Barrett´s esophagus. 
Through endoscopic optical coherence tomography this CAD 
analyzes the image executing its four modules: region of 
interest segmentation, dysplasia-related image feature 
extraction, feature selection and site classification and 
validation. This software resulted in 84% of accuracy when 
classifying dysplastic vs. non-dysplastic Barret´s esophagus 
tissue. 
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Figure 1 - Example CLE Images 

Aubreville et al. [8] used Deep Learning technologies on 
Confocal Laser Endomicroscopy (CLE) images to 
automatically classify cancerous tissue in Laser 
endomicroscopy images of the oral cavity. The presented 
approach in CLE image recognition results in an area under the 
curve (AUC) of 0.96 and a mean accuracy of 88.3% (sensitivity 
86.6%, specificity 90%). 
Swager [9] developed a CAD system for the classification of 
Barrett´s cancer using Volumetric Laser Endomicroscopy 
(VLE). The evaluation was done using commonly used image 
analysis features (e.g. Local Binary Patterns - LBP, Histogram 
of Oriented Gradients - HOG and Gray-Level Co-occurrence 
Matrix - GLCM features) in combination with popular 
classification methods (e.g. Support Vector Machine - SVM, 
Random Forest and Neural Networks). Based on the clinical 
prediction model, in this study the author derived three features: 
(1) Layer histogram, (2) Large-scale gray-level co-occurrence 
matrix features and (3) Bin median of pixel averages, which 
were called clinically-inspired features. In this case, the 
proposed clinically-inspired features outperformed the state-of-
the art alternatives and also human experts in distinguishing 
cancerous tissue from non-dysplastic tissue based on ex vivo 
VLE images. 
Although the results presented by the analyzed papers were 
very promising, none of the techniques seems to be reliable 
enough to classify the exams and, in a real-world scenario, it 
would still be required that a biopsy be conducted on the patient 
to determine the presence of a disease. 



IV. DATASET 
In order to train, validate and attest the performance of the 
classifiers, a set of images of the diseases was required. This 
paper uses the image dataset from the Analysis of Images to 
Detect Abnormalities in Endoscopy (AIDA-E) challenge 
[19], which was published during the 2016 edition of The 
IEEE International Symposium on Biomedical Imaging 
(ISBI). The proper permissions were given by the owners to 
use this dataset in this research. They also state that the dataset 
is open for use in research as long as the owners or the challenge 
itself is mentioned. The dataset consists of 262 images from 
CLE exams being 172 affected by BAR, 60 by NPL and 30 by 
GM. The images are 1024 pixels wide by 1024 pixels tall, with 
8 bits for color. 
In the deep learning approach used by Aubreville et al. [8] a 
dataset of more than 7 thousand images was used, reaching a 
mean accuracy of around 88%. Considering that the dataset 
available for this work is only composed of 262 images, it can 
be seen that deep learning approaches are very discouraged in 
the sense that they will very unlikely yield any significant 
results. Besides that, it can also be seen that the number of 
images for each disease is unbalanced, there being a lot more 
images for BAR than there are for NPL and GMP. This makes 
neural networks trained with these images biased towards BAR, 
which is not desirable. 
To work around these issues, the images were organized into 
smaller groups. This was done by splitting the images from 
each category into sets of 30 images, resulting in 5 BAR sets, 2 
NPL sets and one GMP set. By combining a set of each 
category, 10 distinct groups of 90 images each were generated. 
They were used as the training and validation data for each of 
the developed classifiers, with a leave-one-out strategy. 

V. DEVELOPED METHODS 
The objective of the proposed method is to classify the images 
in the dataset as being GMP, BAR or NPL.  
In every experiment conducted with the classifiers, to extract 
attributes and analyze the images, the Scikit Image library [10] 
was used. The Scikit Learn [11] library provided the 
fundamental methods for designing, training and validating the 
classifiers. 
The following sections describe a baseline classifier, followed 
by a classifier using GLCM attributes and one using LBP 
attributes. 

A. Baseline Classifier 
Before exploring attributes and techniques related to texture 
analysis, a baseline classifier was designed. This was done in 
order to have results to which the GLCM and LBP classifiers 
could be compared to.  
By observing the average histogram of each category 
(generated by averaging the histograms of all images in the 
category), as seen in Figure 2, Figure 3 and Figure 4 it can be 
noted that they present characteristics in their distributions that 
can be used in order to classify them. Due to that, color intensity 
distribution was chosen as the source of the attributes in the 
baseline classifier. 

 
 
The baseline classifier was built using a neural network based 
on the Multi-Layer Perceptron (MLP) [12]. The network is 
composed of a single hidden layer of 25 neurons.  
The inputs for this network are based on the color intensity of 
each pixel. The inputs are: 
 

• Mean – Average of the grayscale intensities of each pixel 
in a given image; 

• Variance – How the grayscale intensities of each pixel are 
distributed around the median; 

 
Figure 2 - Average Histogram for GMP 

 
Figure 3 - Average Histogram for BAR 

 
Figure 4 - Average Histogram for NPL 

 



• Asymmetry – Describes the concentration of values 
related to the median; 

• Kurtosis – Describes the degree of flattening of the 
distribution function of the grayscale values in the image; 

• Pixels within the range 150:199 – Number of pixels with 
intensities between 150 and 199; 

• Pixels more intense than 200 – Number of pixels with 
intensities greater than (or equal to) 200. 

 

The classifier training and validation was conducted using the 
groups of images generated from the dataset, described on 
section IV.A, and the Leave One-Out Cross Validation 
approach in which, for each group, the classifier is trained with 
all but one image, which is used to validate the classifier’s 
performance afterwards. This process repeats once for every 
image in the group. The predictions given by the classifier for 
each image are then combined into the group’s results. The 
classifier yielded the overall results shown in Table 2. Results 
for each group are shown in Table 2. The classifier shows a 
mean accuracy of 63.5%. 

Table 2 - Overall results for the baseline classifier 

 Pred. GMP Pred. BAR Pred. NPL 
Actual GMP 171 (57%) 104 (35%) 25 (8%) 
Actual BAR 105 (35%) 161 (54%) 34 (11%) 
Actual NPL 30 (10%) 30 (10%) 240 (80%) 

 

B. Classifier using Gray Level Co-Occurrence Matrix 
(GLCM) 

The Gray Level Co-Occurrence Matrix (GLCM) [13] is a 
classic technique used to describe an image’s texture, i. e., the 
relationship between neighboring pixels, instead of just their 
intensities as an isolated information. 
A GLCM is calculated by tabulating the occurrences of a pair 
of pixel intensities in a given distance and direction. As seen in 
Figure 5, the number of times two pixels are positioned as 
described by a and b is accounted for in a’s intensity’s line and 
b’s intensity’s column of the matrix. 
The matrices in the figure, starting in the upper-right corner, 
clockwise, are 0q with distance 1, 45q with distance 1 and 270q 

with distance 1. After all pairs have been accounted for, all of 
the numbers are then divided by the total number of pairs found 
in the image. By doing so it becomes possible to read the value 
as the probability of a pair showing up in the original image. 
The extraction of attributes from GLCM was first introduced 
by Haralick et al. in [16][8], however, Baraldi and Parmiggiani 
[17] show that only some of them are actually relevant when 
describing textures, which are: 

• Angular Second Moment 
• Entropy 
• Contrast 
• Variance 
• Correlation 
• Homogeneity 

 
For each image, four matrices were calculated with a pixel 
distance of 1 and angles of 0q, 45q, 90q and 135q. The six 
attributes aforementioned were extracted from these matrices 
and used as inputs for the classifier totaling, along with the six 
from the baseline classifier, 30 distinct inputs. The training and 
validation were conducted using the same approach and image 
groups as the baseline classifier. The classifier yielded the 
overall results shown in Table 4. Results for each group are 
shown in Table 3. The classifier shows a mean accuracy of 
67.5%. 

Table 1 - Per Group Results for Baseline Classifier 

Actual GMP Acc. BAR Acc. NPL Acc. Predicted GMP BAR NPL GMP BAR NPL GMP BAR NPL 
Group 1 13 14 3 43% 13 13 4 43% 1 3 26 87% 
Group 2 17 12 1 56% 11 16 3 53% 1 3 26 87% 
Group 3 22 6 2 73% 8 19 3 63% 4 3 23 77% 
Group 4 19 10 1 63% 8 19 3 63% 4 6 20 67% 
Group 5 16 11 3 53% 13 12 5 40% 5 4 21 70% 
Group 6 19 8 3 63% 8 17 5 57% 2 5 23 77% 
Group 7 13 13 4 43% 11 15 4 50% 4 1 25 83% 
Group 8 16 11 3 53% 15 13 2 43% 2 1 27 90% 
Group 9 21 8 1 70% 7 20 3 67% 4 2 24 80% 
Group 10 15 11 4 50% 11 17 2 57% 3 2 25 83% 

Total 56.7% Mean Accuracy, Std. Dev. 10.38 53.6% Mean Accuracy, Std. Dev. 9.44 80.1% Mean Accuracy, Std. Dev. 7.4 
 

 
Figure 5 – Example of GLCMs of an image 



Table 4 - Overall Results for GLCM Classifier 

 Pred. GMP Pred. BAR Pred. NPL 
Actual GMP 173 (58%) 96 (32%) 31 (10%) 
Actual BAR 80 (27%) 188 (63%) 32 (11%) 
Actual NPL 25 (8%) 28 (9%) 247 (82%) 

C. Classifier Using Local Binary Patterns (LBP) 
The Local Binary Patterns (LBP) [16] like the GLCM, is 
another classic technique used to describe an image’s texture. 
The LBP matrix is calculated by, first, defining a distance (d) 
and an amount of points (n). Then, for every pixel in the image, 
n points are taken from the neighboring pixels at distance d. If 
the intensity of that pixel is greater than the current one’s, a ‘1’ 
is written. Otherwise, a ‘0’ is written. 
After all the pixels have been computed, a string of ‘1’s and ‘0’s 
will have been generated. That string is then used as a binary 
number and converted into a decimal number, which is placed 
in the according position in the LBP matrix. The generated 
matrix will have the same size as the original image. 
For example, considering the case with the distance equal to 1 
pixel, taking the upper-right bit as the first one and using a 
clockwise direction, the generated binary code would be 
11110000, which is represented by the decimal number 240, 
after a standard binary conversion. 
Out of the generated matrix it is possible to extract statistical 
attributes such as: Mean, Variance, Asymmetry and Kurtosis; 
which were explored in the baseline classifier. 

This classifier uses 3 LBP matrices to generate the inputs: one 
with distance 1 and 8 points, one with distance 2 and 16 points 
and one with distance 3 and 24 points, as seen in Figure 6.  The 
four statistical attributes are calculated from these matrices, 
totaling, along with the baseline attributes, 18 attributes which 
are used as input. 
The training and validation were, again, conducted using the 
same approach and image groups as the baseline classifier. The 
classifier yielded the overall results shown in Table 5. Results 
for each group are shown in Table 6. The classifier shows a 
mean accuracy of 67.7%. 

Table 5 - Overall Results for LBP Classifier 

 Pred. GMP Pred. BAR Pred. NPL 
Actual GMP 187 (62%) 89 (30%) 24 (8%) 
Actual BAR 86 (29%) 176 (59%) 38 (12%) 
Actual NPL 12 (4%) 41 (14%) 247 (82%) 

VI. CONCLUSIONS 
In this paper we explored the impact of adding attributes related 
to classic texture description techniques to a classifier for 
separating images of GMP, BAR and NPL. This analysis was 
done using a small and unbalanced dataset, which discouraged 
deep learning approaches. By creating smaller balanced groups 
of images, we were able to train and validate the classifier 
without biasing it towards any of the outcomes. 
It could be seen in the baseline classifier, which relied only on 
color intensity attributes, that the results were only reasonable 
at 63.5% mean accuracy and that the standard deviation for the 
group accuracies was considerably high at around 9 points. In 
the GLCM classifier, an increase of 4% in mean accuracy could 
be observed and, in the LBP classifier, 4.2%. 
Although the accuracies for both the GLCM and LBP 
classifiers were pretty similar, it can be noted that the standard 
deviation for group accuracies in the GLCM classifier still 
roamed around 7,6 points, while for the LBP classifier the 
standard deviation lowered to around 4,7 points. This shows 
that both techniques have a similar impact in accuracy, but the 
use of LBP resulted in more consistent results for the groups. It 

Table 3 - Group Results for GLCM Classifier 

Actual GMP Acc. BAR Acc. NPL Acc. Predicted GMP BAR NPL GMP BAR NPL GMP BAR NPL 
Group 1 18 10 2 60% 7 17 6 57% 3 4 23 77% 
Group 2 16 11 3 53% 13 16 1 53% 1 3 26 87% 
Group 3 20 6 4 67% 8 20 2 67% 3 4 23 77% 
Group 4 19 5 6 63% 5 23 2 77% 3 1 26 87% 
Group 5 17 11 2 57% 9 14 7 47% 3 7 20 67% 
Group 6 17 12 1 57% 9 18 3 60% 1 3 26 87% 
Group 7 18 9 3 60% 9 17 4 57% 3 3 24 80% 
Group 8 17 11 2 57% 7 22 1 73% 4 1 25 83% 
Group 9 16  12 2 53% 7 19 4 63% 3 1 26 87% 
Group 10 15 9 6 50% 6 22 2 73% 1 0 29 97% 

Total 57.7% Mean Accuracy, Std. Dev. 5 62.7% Mean Accuracy, Std. Dev. 9.7 82.8% Mean Accuracy, Std. Dev. 8.1 
 

 
Figure 6 – LBP Matrices 



can also be seen that the LBP classifier reached the same mean 
accuracy as the GLCM classifier while using less attributes as 
input. 
When compared to the aforementioned researches on similar 
subjects, some interesting differences come up. Looking at [2] 
we can see that the number of inputs for the classifier is relative 
to the image size, since it computes 2 attributes for every 50x50 
pixel block. That means that, for images with different sizes, 
the classifier would have to be remodeled. In the approaches 
presented in this paper, all the classifiers require a specific 
amount of inputs, for any given image size, requiring only that 
the model be retrained, not remodeled, for a different image 
size. 
The deep-learning approach taken in [8] requires a much larger 
dataset of images in order to be trained. That dataset was 
composed of more than 7 thousand images, whereas the 
classifiers presented here were trained with 90. Considering 
that a mean accuracy of 82.8% was achieved for NPL images, 
there is a reason to believe that a classifier can reach similar 
results to the ones in [8] even with smaller datasets. 
Overall, the use of attributes taken from texture description 
techniques can be seen as beneficial for improving the accuracy 
of image classifiers and, the use of LBP in particular, for 
improving the consistency of the results. Even with a small 
dataset and the issue of the unbalance between categories, these 
techniques still showed significant improvement. 
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Table 6 - Group Results for LBP Classifier 
 

Actual GMP Acc. BAR Acc. NPL Acc. Predicted GMP BAR NPL GMP BAR NPL GMP BAR NPL 
Group 1 17 11 2 57% 8 18 4 60% 1 4 25 83% 
Group 2 21 9 0 70% 10 19 1 63% 1 4 25 83% 
Group 3 17 9 4 57% 7 16 7 53% 1 7 22 73% 
Group 4 19 10 1 63% 8 19 3 63% 2 4 24 80% 
Group 5 19 8 3 63% 7 17 6 57% 0 7 23 77% 
Group 6 19 9 2 63% 9 19 2 63% 0 4 26 87% 
Group 7 20 9 1 67% 9 15 6 50% 3 3 24 80% 
Group 8 19 7 4 63% 11 16 3 53% 1 3 26 87% 
Group 9 18 8 4 60% 10 17 3 57% 1 3 26 87% 
Group 10 18 9 3 60% 7 20 3 67% 2 2 26 87% 

Total 62.3% Mean Accuracy, Std. Dev. 4.0 58.6% Mean Accuracy, Std. Dev. 5.5 82.4% Mean Accuracy, Std. Dev. 4.8 
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